Как оценивается опасность поражения человека током электроустановки в электросетях различной конфигурации. Путь прохождения тока через тело человека Замыкания на корпус в электроустановках

Для переменного тока играет роль также его частота. С увеличением частоты переменного тока полное сопротивление тела уменьшается, что приводит к увеличению тока, проходящего через человека, а следовательно, повышается опасность поражения. Наибольшую опасность представляет ток с частотой от 50 до 100 Гц; при дальнейшем увеличении частоты опасность смертельного поражения уменьшается. Снижение опасности поражения током с ростом частоты становится практически заметным при частоте, превышающей 1…2 кГц, и полностью исчезает при частоте от 45 до 50 кГц. Однако при таких частотах тока сохраняется опасность ожогов.

Путь прохождения тока через тело человека . Путь прохождения тока через тело человека играет существенную роль в исходе поражения, так как ток может пройти через жизненно важные органы: сердце, легкие, головной мозг и др. Влияние прохождения пути тока на исход поражения определяется также сопротивлением кожи на различных участках тела.

Возможных путей прохождения тока в теле человека, которые называются также петлями тока, достаточно много. Наиболее часто встречающиеся петли тока и их характеристики приведены в таблице2.

Таблица 2 – Характеристики путей тока в теле человека

Наименование петли

Путь прохождения тока

Частота возникновения пути

Доля терявших

сознание при

поражении, %

Рука – рука

Правая полная

Правая рука – ноги

Левая полная

Левая рука – ноги

Нога – нога

Прямая вертикальная

Голова – ноги

Прямая горизонтальная

Голова – руки

Наиболее опасны петли «голова – руки» и «голова – ноги», но эти петли возникают относительно редко. При проектировании, расчете и эксплуатационном контроле защитных систем руководствуются допустимыми значениями тока при данном пути его протекания и длительности воздействия в соответствии с ГОСТ 12.1.038-82. При длительном воздействии на человека, более 30 с, величина допустимого токапринята равной1 мА, при продолжительности воздействия от 30 с до 1 с – 6 мА, а при воздействии менее 1 с величина допустимого тока принимается равной 50 мА.

Однако приведенные величины токов не могут рассматриваться как обеспечивающие полную безопасность и принимаются в качестве практически допустимых с достаточно малой вероятностью поражения. Эти токи считаются допустимыми для наиболее вероятных путей их протекания в теле человека: «рука – рука», «рука – ноги».

Индивидуальные свойства человека при поражении электрическим током в основном определяются электрическим сопротивлением тела человека, которое представляет собой сумму сопротивлений кожи и внутренних тканей. Ток, проходящий через тело человека, можно оценить по закону Ома:

где I чел – ток, проходящий через человека, А;

U – напряжение, приложенное к человеку, В;

R чел – сопротивление тела человека, Ом.

Сопротивление тела человека при сухой, чистой и неповрежденной коже колеблется от 3 до 100 кОм и более, а сопротивление внутренних органов тела составляет всего от 300 до 500 Ом. Пренебрегая ёмкостной составляющей тела человека, в качестве расчетной величины при воздействии переменного тока промышленной частоты, принимают значение активного сопротивления тела человека, равное 1000 Ом.

2.2 Анализ поражения током в электрических сетях

Поражение человека током возможно только при замыкании электрической цепи через тело человека. Напряжение между двумя точками цепи тока, которых одновременно касается человек, называется напряжением прикосновения . Опасность такого прикосновения оценивается величиной тока, проходящего через тело человека. Величина тока зависит от напряжения прикосновения и ряда факторов: сопротивления кожи человека, схемы замыкания цепи тока через тело человека, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, значения емкости токоведущих частей относительно земли и др.

Возможны два случая замыкания цепи тока через тело человека: человек касается одновременно двух фазных проводов и человек касается лишь одного фазного провода. Применительно к сетям переменного тока первую схему обычно называют двухфазным прикосновением (рисунок 2а), а вторую – однофазным (рисунок 2б, в).


а – двухфазное прикосновение; б – однофазное прикосновение в сети с изолированной нейтралью; в – однофазное прикосновение в сети с заземленной нейтралью

Рисунок 2 – Схемы возможного включения человека в сеть трехфазного тока

Двухфазное прикосновение человека к цепи тока происходит довольно редко, но является наиболее опасным и часто бывает со смертельным исходом, поскольку к телу человека прикладывается наибольшее в данной сети напряжение – линейное U л =
U ф . В сетях с линейным напряжением U л = 380 В (U ф = 220 В) при сопротивлении тела человека R ч = 1000 Ом ток через человека равен

Этот ток для человека смертельно опасен, т.к. почти в четыре раза превышает значение порогового фибрилляционного тока I фиб = 100 мА. При двухфазном прикосновении ток, проходящий через человека, практически не зависит от режима нейтрали сети.

Однофазное прикосновение происходит во много раз чаще, чем двухфазное, но оно менее опасно, потому что фазное напряжение меньше линейного в 1,73 раза, при этом будет меньше и ток, проходящий через человека. На величину тока, проходящего через человека, значительное влияние оказывает сопротивление изоляции проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви, режим нейтрали электрической сети и некоторые другие факторы. В России используют всего два вида трехфазных сетей до 1000 В: трехфазная трехпроводная сеть с изолированной нейтралью и трехфазная четырехпроводная сеть с глухозаземленной нейтралью. Рассмотрим условия поражения током в зависимости от режима нейтрали сети.

В сети с изолированной нейтралью при прикосновении человека к проводу одной из фаз ток проходит через тело человека, землю и далее через сопротивление изоляции в сеть (см. рисунок 2б). Если электрическая емкость проводов относительно земли мала, что обычно имеет место в воздушных сетях небольшой протяженности, значение тока, проходящего через человека, определяется, как

,

где U ф – фазное напряжение, В;

R ч , R об , R n , R из – сопротивление человека, обуви, покрытия пола и изоляции проводов относительно земли, кОм.

U ф = 220 В, R ч = 1 кОм,
R об = 20 кОм, R n = 30 кОм и R из = 150 кОм величина тока через человека будет равна I ч = 2,2 мА, что больше величины порогового ощутимого, но меньше порогового неотпускающего тока, и вероятность благоприятного исхода весьма велика.

В сети с заземленной нейтралью при прикосновении человека к фазному проводу он также оказывается под фазным напряжением (рисунок 2в), но ток в этом случае проходит через тело человека в землю и далее через заземление нейтрали в сеть. Тогда сила тока через человека равна

,

где R о – сопротивление заземления нейтрали, обычно R о = 4 Ом.

При подстановке численных значений U ф = 220 В, R ч = 1 кОм,
R об = 20 кОм, R n = 30 кОм и R о = 4 Ом получим несколько большее значение тока, чем в сети с изолированной нейтралью и равное

I ч =4,4 мА, что с достаточно большой вероятностью также безопасно для человека.

Как видно из расчетов, при нормальных условиях эксплуатации электроустановок однофазное включение человека в сеть с изолированной нейтралью менее опасно, чем в сеть с заземленной нейтралью.

Любое прикосновение к токоведущим частям электроустановок напряжением выше 1000 В опасно независимо от схемы питания. Поэтому в таких сетях принимают все меры для того, чтобы сделать токоведущие части недоступными для случайного прикосновения человека. Их располагают на недоступном расстоянии, надежно ограждают, строго регламентируют порядок допуска к электроустановкам и т.п.

Напряжение прикосновения при касании человеком оборудования, оказавшегося под напряжением, зависит от состояния заземления, расстояния человека от заземляющего электрода и сопротивления
основания, на котором стоит человек. Наглядно это показано на рисунке 3. Напряжение прикосновения равно

U ПР = φ max –φ Н ,

где φ max – максимальный потенциал, который будет на заземленном корпусе и заземляющем электроде;

φ н – потенциал поверхности земли в точке нахождения ног человека.

В случае нахождения ног человека над заземляющим электродом напряжение прикосновения равно нулю, так как потенциалы руки и ног одинаковы и равны потенциалу заземлителя. При удалении человека от заземляющего электрода напряжение прикосновения стремится к максимальному значению, так как потенциал ног стремится к нулю. Практически на расстоянии 20 м от одиночного заземлителя напряжение прикосновения приобретает максимальное значение.

Величина напряжения прикосновения также определяется сопротивлением обуви и основания пола или грунта непосредственно под ногами. Поэтому применение диэлектрических перчаток, галош или бот будет увеличивать общее сопротивление человека и, следовательно, значительно уменьшит величину тока, проходящего через тело человека.

В области зоны растекания электрического тока в земле, для одиночного заземлителя радиус зоны около 20 м, возникает опасность поражения от напряжения шага (рисунок 3).


А – потенциальная кривая; К – кривая прикосновения

Напряжением шага называется разность потенциалов между двумя точками в зоне растекания электрического тока, находящимися на расстоянии шага человека, и на которых одновременно находятся ноги человека. Напряжение шага равно

U Ш = φ 1 –φ 2 ,

где φ 1 – потенциал одной ноги человека, В;

φ 2 – потенциал другой ноги человека, В.

Даже при небольшом шаговом напряжении (от 50 до 80 В) может возникнуть непроизвольное судорожное сокращение мышц ног, и возможно падение человека на землю. При этом он вынужден одновременно касаться земли руками и ногами, расстояние между которыми больше, чем длина шага, поэтому напряжение увеличивается. В таком случае образуется новый путь прохождения тока, затрагивающий жизненно важные органы, и возникает реальная угроза смертельного поражения. При уменьшении длины шага шаговое напряжение снижается. Поэтому для того чтобы выбраться из зоны действия шагового напряжения, следует передвигаться как можно более короткими шагами.

2.3 Классификация помещений по опасности поражения электрическим током

Состояние окружающей воздушной среды и окружающей обстановки могут значительно влиять на опасность поражения электрическим током. В связи с этим все помещения делятся по степени опасности поражения людей электрическим током на три класса: без повышенной опасности, с повышенной опасностью и особо опасные.

К помещениям с повышенной опасностью относятся помещения, характеризующиеся наличием любого из пяти факторов: 1) относительная влажность воздуха превышает 75 % (сырые помещения); 2) температура воздуха превышает 35 0 С (жаркие помещения); 3) наличие токопроводящей пыли (например, угольная, металлическая и т.п.); 4) наличие токопроводящего пола (например, металлический, бетонный, земляной, глиняный); 5) возможность одновременного прикосновения к корпусу электрооборудования и заземленному предмету.

Примером помещений с повышенной опасностью могут служить лестничные клетки различных зданий с проводящими полами; складские помещения; цеха или мастерские по механической обработке металла или дерева и др.

К особо опасным помещения м относятся помещения, характеризующиеся наличием любого из трех условий: 1) относительная влажность воздуха близка к 100 % (особо сырые помещения); 2) наличие химически активной и органической среды, разрушающей изоляцию и токоведущие части электроустановок; 3) наличие двух или более факторов, свойственных помещениям с повышенной опасностью, например, сырое помещение с токопроводящими полами или жаркое с токопроводящей пылью и т.п.

Особо опасными помещениями являются большая часть производственных помещений, в том числе все цеха электростанций, помещения аккумуляторной и электролизной и т.п. Территории размещения наружных электроустановок в отношении опасности поражения током приравнены к особо опасным помещениям.

К помещениям без повышенной опасности относятся все остальные помещения, характеризующиеся отсутствием условий, создающих повышенную или особую опасность при поражении электрическим током. Примером таких помещений могут служить помещение бухгалтерии, учебные классы, некоторые лаборатории и др.

С учетом класса помещения по опасности поражения током производится выбор электрооборудования и конструкций электроустановок, которые должны успешно противостоять воздействию окружающей среды и обеспечивать высокую степень безопасности при обслуживании.

3 Первая помощь при поражении

электрическим током

Первую помощь пораженному током должен уметь оказывать каждый работающий в электроустановках. Первая помощь при поражении электрическим током состоит из двух этапов: освобождение пострадавшего от действия тока и оказание ему доврачебной медицинской помощи. Поскольку степень поражения током зависит от длительности прохождения его через тело человека, очень важно как можно быстрее освободить пострадавшего от тока и при необходимости сразу же приступить к оказанию ему медицинской помощи. Это требование относится и к случаю смертельного поражения током, поскольку период клинической смерти продолжается несколько минут. Во всех случаях поражения человека током необходимо, не прерывая оказания ему первой помощи, вызвать медицинского работника и при необходимости оказать помощь по доставке пострадавшего в лечебное учреждение.

3.1 Освобождение пострадавшего от действия электрического тока

При поражении электрическим током часто оказывается, что пострадавший не может самостоятельно освободиться от действия электрического тока. Освобождение пострадавшего от действия тока можно осуществить несколькими способами.

Во всех случаях наиболее надежный способ освобождения пострадавшего – это быстрое отключение электроустановки. Отключение электроустановки производится с помощью ближайшего рубильника, выключателя или иного отключающего аппарата, а также путем снятия предохранителей, разъема соединения и т.п. Если пострадавший находится на высоте, то нужно принять меры против его падения при выключении тока. При искусственном освещении нужно быть готовым к отсутствию освещения при отключении тока.

Если быстро нельзя отключить электроустановку, надо освободить пострадавшего от токоведущих частей другими способами. При напряжении в сети до 1000 В освобождение от токоведущих частей можно производить отбрасыванием провода от пострадавшего или оттаскиванием пострадавшего от провода. Отбрасывание провода можно производить любым сухим предметом из непроводящего материала (сухой палкой, доской, веревкой), рукой в диэлектрической перчатке, в брезентовой рукавице или рукой, обмотанной сухой тканью. Оттаскивать пострадавшего можно только за его сухую одежду, а если нет такой возможности, то освобождающий оттягивает пострадавшего руками, защищенными от электрического тока.

Если пострадавший судорожно сжимает рукой провод, находящийся под напряжением, то для освобождения его от действия тока можно разжать его руку, отгибая каждый палец в отдельности. Для этого оказывающий помощь должен иметь на руках диэлектрические перчатки и стоять на изолирующем основании – диэлектрическом коврике, сухой доске и т.п. Прервать действие тока можно также, изолировав пострадавшего от земли, например, подложив под него сухую доску. При необходимости можно перерубить или перерезать провода топором с сухой ручкой или инструментом с изолированными руч-ками.

При напряжении в сети выше 1000 В можно освобождать пострадавшего только отключением электроустановки или использовать основные изолирующие средства для сетей выше 1000 В (изолирующие штанги, изолирующие клещи):

– надеть диэлектрические перчатки, резиновые боты или галоши;

– взять изолирующую штангу или изолирующие клещи;

– замкнуть провода ВЛ 6–20 кВ накоротко методом наброса, согласно специальной инструкции;

– сбросить изолирующей штангой провод с пострадавшего;

– оттащить пострадавшего за одежду не менее чем на 10 метров от места касания проводом земли или от оборудования, находящегося под напряжением.


3.2 Оказание первой доврачебной медицинской помощи

Меры первой доврачебной медицинской помощи пострадавшему от электрического тока зависят от его состояния. Для определения состояния пострадавшего его необходимо уложить на спину и проверить наличие дыхания и сердечных сокращений.

Нарушенное дыхание характеризуется нечеткими или неритмичными подъемами грудной клетки при вдохах, редкими, как бы хватающими воздух, вдохами или отсутствием видимых дыхательных движений грудной клетки. Все эти случаи расстройства дыхания приводят к тому, что кровь в легких недостаточно насыщается кислородом, в результате чего наступает кислородное голодание тканей и
органов пострадавшего. Поэтому в этих случаях пострадавший нуждается в искусственном дыхании.

Наличие сердечных сокращений свидетельствует о работе сердца, т.е. о наличии в организме кровообращения, его определяют путем выслушивания сердечных тонов, приложив ухо к левой половине груди пострадавшего, или проверкой пульса. Наличие пульса проверяют на крупных артериях, где он более выражен, – на лучевой, бедренной и сонной.

Проверка состояния пострадавшего, включая придание его телу соответствующего положения, проверка дыхания, пульса и состояния зрачка должна производится быстро – в течение 15…20 с.

Возможные меры доврачебной помощи:

– если у пострадавшего отсутствуют дыхание и пульс, то немедленно нужно приступить к его оживлению путем искусственного дыхания и наружного (непрямого) массажа сердца;

– если пострадавший дышит редко и судорожно, но у него прощупывается пульс – начать делать искусственное дыхание;

– если пострадавший в сознании с устойчивым дыханием и пульсом, нужно его уложить на одежду или другую подстилку, расстегнуть одежду, стесняющую дыхание, дать приток свежего воздуха, согреть при охлаждении и дать прохладу в жару;

– если пострадавший находится в бессознательном состоянии при наличии дыхания и пульса, нужно наблюдать за его дыханием; в случае нарушения дыхания при западании языка – выдвинуть нижнюю челюсть вперед и поддерживать её в таком состоянии до прекращения западания языка.

Во всех случаях поражения электрическим током необходимо вызвать врача независимо от состояния пострадавшего.

Делая искусственное дыхание способом «изо рта в рот», оказывающий помощь располагается сбоку от головы пострадавшего, одну руку подсовывает под его шею, а ладонью другой руки надавливает на лоб, максимально запрокидывая голову. При этом корень языка поднимается и освобождает вход в гортань, а рот пострадавшего открывается.

Оказывающий помощь наклоняется к лицу пострадавшего, делает глубокий вдох открытым ртом, затем полностью плотно охватывает губами открытый рот пострадавшего и делает энергичный выдох; одновременно закрывает нос пострадавшего щекой или пальцами руки, находящейся на лбу. Как только грудная клетка пострадавшего поднялась, нагнетание воздуха приостанавливают, оказывающий помощь приподнимает свою голову, происходит пассивный выдох у пострадавшего. Для того, чтобы выдох был более глубоким, можно несильным нажатием руки на грудную клетку помочь воздуху выйти из легких пострадавшего.

эксплуатации электроустановок Потребителей Раздел 1, Глава 1 . ... каждый Потребитель при эксплуатации электроустановок ? (*) Производственные инструкции по эксплуатации электроустановок . (*) Должностные...

  • Документ

    ... при эксплуатации электроустановок при эксплуатации электроустановок ... к персоналу в отношении электробезопасности

  • Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок с изменениями и дополнениями

    Документ

    ... при эксплуатации электроустановок (2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989) и Правила техники безопасности при эксплуатации электроустановок ... к персоналу в отношении электробезопасности являются минимальными и решением руководителя...

  • Документ

    ... при эксплуатации электроустановок (2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989) и Правила техники безопасности при эксплуатации электроустановок ... к персоналу в отношении электробезопасности являются минимальными и решением руководителя...

  • Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок пот р м-016-2001 рд 153-34 0-03 150-00

    Документ

    ... при эксплуатации электроустановок (2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989) и Правила техники безопасности при эксплуатации электроустановок ... к персоналу в отношении электробезопасности являются минимальными и решением руководителя...

  • Наибольшее сопротивление заземляющего устройства Я 3 (в Ом) не должно быть более

    R 3 = 250/I,

    где I - расчетная сила тока замыкания на землю, А.

    При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ

    R 3 = 250/I,

    При удельном сопротивлении земли ρ , большем 500 Омм, допускается вводить на указанные значения сопротивлений заземляющего устройства повышающие коэффициенты, зависящие от ρ .

    Сила тока I ч проходящего через тело человека, является главным фактором, от которого зависит тяжесть поражения.

    Прикосновение человека к одной фазе - однофазное включение - значительно менее опасно , чем к двум - двухфазное.

    Это объясняется тем, что,

    во- первых , человек оказывается в этом случае под фазным напряжением, которое в -√3 раз меньше линейного;

    во-вторых , в цепи оказывается последовательно включенным ряд дополнительных сопротивлений (пола, обуви и др.).

    Сила тока, проходящего через тело человека при однофазном включении, составит:

    В сети с заземленной нейтралью (рис. 1.2)

    В сети с изолированной нейтралью (см. рис. 1.1, а)

    где - сопротивление обуви человека, Ом; R п - сопротивление пола, на котором стоит человек, Ом; R из - сопротивление изоляции одной фазы сети относительно земли, Ом; R з - сопротивление заземления нейтрали, Ом.

    В расчетах сопротивление резиновой обуви принимают не менее 5 10 4 Ом, сухого пола из


    кирпича - не менее 11 10 6 Ом-м, линолеума - не менее 2 10 6 Ом-м, дубового паркета - не менее 1,7 10 6 Ом-м, бетона - не менее 0,6 10 6 Ом-м, изоляции проводов относительно земли - не менее 0,6 10 6 Ом. Мокрые полы имеют сопротивление во много раз меньше.

    При двухфазном включении (рис. 1.3) сила тока, протекающего через тело человека,

    Где U л и U ф - линейное и фазное напряжение сети, В; R , од - сопротивление одежды, Ом.

    Рис. 1.3. Прикосновение человека к двум фазам трехфазной сети с линейным напряжением 220 В с изолированной нейтралью:

    Сопротивление одежды учитывается только в том случае, если человек прикоснулся к токоведущей части участком тела, защищенным одеждой.

    При одновременном касании к обеим фазам через одежду это сопротивление удваивается. Электрическое сопротивление одежды зависит от вида и влажности ткани. Для хлопчатобумажной ткани при площади электрода 100 см 2 она составляет:



    для сухой ткани 10... 15 кОм,

    для влажной 0,5... 1 кОм.

    При наиболее неблагоприятных условиях (касание токоведущих частей оголенными участками тела с поврежденной кожей) ток, проходящий через тело человека, может достигать силы 380 мА.

    Знание процессов, протекающих в электроустановках, позволяет энергетикам безопасно эксплуатировать оборудование любого напряжения и вида тока, выполнять ремонтные работы и техническое обслуживание электрических систем.

    Избежать случаев поражения током электроустановки помогает информация, излагаемая в , ПТБ и ПТЭ - основных документов, созданных лучшими специалистами на основе анализа несчастных случаев с людьми, пострадавшими от опасных факторов, сопровождающих работу электрической энергии.

    Обстоятельства и причины попадания человека под действие электрического тока

    Руководящие документы по безопасности выделяют три группы причин, объясняющих поражение работников электрическим током:

    1. непреднамеренное, нечаянное приближение к токоведущим частям с напряжением на расстояние, меньшее безопасного или прикосновение к ним;

    2. возникновение и развитие аварийных ситуаций;

    3. нарушения требований, указанных в руководящих документах, предписывающих правила поведения работников в действующих электроустановках.

    Оценка опасностей поражения человека заключается в определении расчетами величин токов, которые проходят через тело пострадавшего. При этом приходится учитывать много ситуаций, когда контакты могут возникнуть в случайных местах электроустановки. К тому же, приложенное к ним напряжение изменяется в зависимости от многих причин, включающих условия и режимы работы электрической схемы, ее энергетические характеристики.

    Условия поражения человека током электроустановки

    Чтобы через тело пострадавшего стал протекать ток, необходимо создать электрическую цепь подключением его минимум к двум точкам схемы, обладающей разностью потенциалов - напряжением. На электрическом оборудовании возможны проявления следующих условий:

    1. одновременное двухфазное или двухполюсное прикосновение к различным полюсам (фазам);

    2. однофазное или однополюсное прикосновение к потенциалу схемы, когда человек имеет непосредственную гальваническую связь с потенциалом земли;

    3. случайное создание контакта с проводящими элементами электроустановки, которые оказались под напряжением в результате развития аварии;

    4. попадание под действие напряжения шага, когда разность потенциалов создана между точками, на которых одновременно находятся ноги или другие части тела.

    При этом может возникнуть электрический контакт пострадавшего с токоведущей частью электроустановки, который рассматривается ПУЭ как прикосновение:

    1. прямое;

    2. либо косвенное.

    В первом случае он создается непосредственным контактом с токоведущей частью, включенной под напряжение, а во втором - при прикосновениях к не изолированным элементам схемы, когда на них прошел опасный потенциал в случае развития аварии.

    Чтобы определить условия безопасной эксплуатации электроустановки и подготовить для работников внутри нее рабочее место, необходимо:

    1. проанализировать случаи вероятного создания путей прохождения электрического тока через организм обслуживающего персонала;

    2. сравнить его максимально возможную величину с действующими минимально допустимыми нормативами;

    3. принять решение о выполнении мер обеспечения электрической безопасности.

    Особенности анализа условий поражения людей в электроустановках

    Для оценки величины тока, проходящего через тело пострадавшего в сети постоянного или переменного напряжения, используются следующие виды обозначений для:

    1. сопротивлений:

      Rh - у тела человека;

      R0 - для устройства заземления;

    Rиз- слоя изоляции относительно контура земли;

    2. токов:

    Ih - через тело человека;

    Iз - замыкания на контур земли;

    Uc - цепи постоянного либо однофазного переменного токов;

    Uл - линейных;

    Uф - фазных;

    Uпр - прикосновения;

    Uш - шага.

    При этом возможны следующие типовые схемы подключения пострадавшего к цепям напряжения в сетях:

    1. постоянного тока при:

      однополюсном касании контакта проводника с потенциалом, изолированным от контура земли;

      однополюсном касании потенциала схемы с заземлённым полюсом;

      двухполюсном контакте;

    2. трехфазных сетей при;

      однофазном контакте с одним из потенциальных проводников (обобщенный случай);

      двухфазном контакте.

    Схемы поражения в цепях постоянного тока

    Однополюсный контакт человека с потенциалом, изолированным от земли

    Под действием напряжения Uc по последовательно созданной цепочке из потенциала нижнего проводника, тела пострадавшего (рука-нога) и контур земли через удвоенное сопротивление изоляции среды протекает ток Ih.

    Однополюсный контакт человека с заземленным потенциалом полюса


    В этой схеме ситуацию усугубляет подключение к контуру земли одного потенциального провода с сопротивлением R0, близким к нулю и значительно меньшим, чем у тела пострадавшего и слоя изоляции внешней среды.

    Сила искомого тока приблизительно равна отношению напряжения сети к сопротивлению человеческого тела.

    Двухполюсный контакт человека с потенциалами сети


    Напряжение сети напрямую прикладывается к телу пострадавшего, а ток через его организм ограничивается только его собственным незначительным сопротивлением.

    Общие схемы поражения в цепях переменного трехфазного тока

    Создание контакта человека между фазным потенциалом и землей

    В общем случае между каждой фазой схемы и потенциалом земли имеется свое сопротивление и создается емкость. Нейтраль обмоток источника напряжения имеет обобщенное сопротивлением Zн, величина которого в разных системах заземления цепи меняется.


    Формулы расчета проводимостей каждой цепочки и общей величины тока Ih через фазное напряжение Uф представлены на картинке формулами.

    Образование контакта человека между двумя фазами

    Наибольшую величину и опасность представляет ток, проходящий через цепочку, созданную между непосредственными контактами тела пострадавшего с фазными проводами. При этом часть тока может пройти по пути через землю и сопротивления изоляции среды.


    Особенности двухфазного прикосновения

    В цепях постоянного и трехфазного переменного токов создание контактов между двумя различными потенциалами наиболее опасно. При такой схеме человек попадает под действие наибольшего напряжения.

    В схеме с источником питания постоянного напряжения величина тока через пострадавшего вычисляется по формуле Ih=Uc/Rh.

    В трехфазной сети переменного тока это значение вычисляется по соотношению Ih=Uл/Rh=√3 Uф/Rh.

    Считая, что среднее электрическое сопротивление тела человека составляет 1 килоом , рассчитаем ток, который возникает в сети постоянного и переменного напряжения 220 вольт.

    В первом случае он составит: Ih=220/1000=0,22А. Этой величины в 220 мА достаточно для того, чтобы пострадавший подвергся судорожному сжатию мышц, когда без посторонней помощи он освободиться от воздействия случайного прикосновения уже не в состоянии - удерживающий ток.

    Во втором случае Ih=(220· 1,732)/1000 =0,38А. При таком значении в 380 мА возникает смертельная опасность поражения.

    Также обращаем внимание на то, что в сети переменного трехфазного напряжения положение нейтрали (может быть изолирована от земли или наоборот - подсоединена накоротко) очень мало влияет на величину тока Ih. Его основная доля идет не через цепочку земли, а между потенциалами фаз.

    Если человек применил средства защиты, обеспечивающие его надежную изоляцию от контура земли, то они в подобной ситуации окажутся бесполезными и не помогут.

    Особенности однофазного прикосновения

    Трехфазная сеть с глухо заземленной нейтралью

    Пострадавший прикасается к одному из фазных проводов и попадает под разность потенциалов между ним и контуром земли. Такие случаи происходят чаще всего.


    Хотя напряжение фазы относительно земли меньше чем линейное в 1,732 раза, такой случай остается опасным. Ухудшить состояние пострадавшего может:

      режим нейтрали и качество ее подключения;

      электрические сопротивления диэлектрического слоя проводов относительно потенциала земли;

      вид обуви и ее диэлектрические свойства;

      сопротивление грунта в месте нахождения пострадавшего;

      другие сопутствующие факторы.

    Значение тока Ih в этом случае можно определить по соотношению:

    Ih=Uф/(Rh+Rоб+Rп+R0).

    Напомним, что сопротивления: человеческого тела Rh, обуви Rоб, пола Rп и заземления у нейтрали R0, принимаются в Омах.

    Чем меньше величина знаменателя, тем сильнее создается ток. Если работник носит токопроводящую обувь, например, промочил ноги или подошвы подбиты металлическими гвоздями, и вдобавок находится на металлическом полу или сырой земле, то можно считать, что Rоб=Rп=0. Так обеспечивается самый неблагоприятный случай для жизни пострадавшего.

    Ih=Uф/(Rh+R0).

    При фазном напряжении в 220 вольт получим Ih=220/1000=0,22 А. Или ток смертельной опасности 220 мА.

    Теперь рассчитаем вариант, когда работник использует средства защиты: диэлектрическую обувь (Rоб=45 кОм) и изолирующее основание (Rп=100 кОм).

    Ih=220/(1000 +45000+10000)=0,0015 А.

    Получили безопасную величину тока 1,5мА.

    Трехфазная сеть с изолированной нейтралью

    Здесь отсутствует прямая гальваническая связь нейтрали источника тока с потенциалом земли. Фазное напряжение приложено к сопротивлению слоя изоляции Rиз, обладающей очень высокой величиной, которая контролируется при эксплуатации и постоянно поддерживается в исправном состоянии.


    Цепь протекания тока через тело человека зависит от этой величины в каждой из фаз. Если учесть все слои сопротивления току, то его величину можно просчитать по формуле: Ih=Uф/(Rh+Rоб+Rп+(Rиз/3)).

    Во время самого неблагоприятного случая, когда созданы условия максимальной проводимости через обувь и пол, выражение примет вид: Ih=Uф/(Rh+(Rиз/3)).

    Если рассматривать сеть 220 вольт с изоляцией слоя в 90 кОм, то получим: Ih=220/(1000+(90000/3)) =0,007 А. Такой ток в 7 мА будет хорошо ощущаться, но смертельную травму обеспечить не сможет.

    Обратим внимание, что мы в рассматриваемом примере умышленно упустили сопротивление грунта и обуви. Если их учесть, то ток снизится до безопасной величины, порядка 0,0012 А или 1,2 мА.

    Выводы:

    1. в схемах с изолированной нейтралью безопасность работников обеспечить проще. Она напрямую зависит от качества диэлектрического слоя проводов;

    2. при одинаковых обстоятельствах прикосновения к потенциалу одной фазы схема с заземленной нейтралью представляет наибольшую опасность, чем с изолированной.

    Рассмотрим случай касания металлического корпуса электрического прибора, если внутри него пробита изоляция диэлектрического слоя у потенциала фазы. Когда человек прикоснется к этому корпусу, то через его тело пойдет ток на землю и далее через нейтраль к источнику напряжения.

    Схема замещения показана на картинке ниже. Сопротивлением Rн обладает создаваемая прибором нагрузка.


    Сопротивление изоляции Rиз совместно с R0 и Rh ограничивает ток междуфазного прикосновения. Он выражается соотношением: Ih=Uф/(Rh+Rиз+Rо).

    При этом, как правило, еще на стадии проекта, выбирая материалы для случая, когда R0=0 стараются соблюдать условие: Rиз>(Uф/Ihg) -Rh.

    Величина Ihg называется порогом неощутимого тока, значение которого человек не будет чувствовать.

    Делаем вывод: сопротивление диэлектрического слоя всех токоведущих частей относительно контура земли определяет степень безопасности электроустановки.

    По этой причине все подобные сопротивления нормированы и учтены утвержденными таблицами. С этой же целью нормируют не сами сопротивления изоляции, а токи утечек, которые через них протекают при испытаниях.

    Напряжение шага

    В электроустановках по разным причинам может возникнуть авария, когда потенциал фазы непосредственно касается контура земли. Если на воздушной ЛЭП один из проводов под действием различного типа механических нагрузок оборвался, то как раз в этом случае и проявляется подобная ситуация.


    При этом в месте контакта провода с землей образуется ток, который создает вокруг точки касания зону растекания - площадку, на поверхности которой появляется электрический потенциал. Его величина зависит от тока замыкания Iз и удельного состояния почвы r.


    Человек, оказавшийся в границах этой зоны, попадает под действие напряжения шага Uш, как показано на левой половинке картинки. Площадь зоны растекания ограничивается контуром, где потенциал отсутствует.

    Значение напряжения шага рассчитывается по формуле: Uш=Uз∙β1∙β2.

    В ней учитывается напряжение фазы в месте растекания тока - Uз, которое уточняется коэффициентами характеристик растекания напряжения β1 и влияния сопротивлений обуви и ног β2. Величины β1 и β2 публикуются в справочниках.

    Значение тока сквозь тело пострадавшего вычисляется выражением: Ih=(Uз∙β1∙β2)/ Rh.

    На правой части рисунка в положении 2 пострадавший создает контакт с замкнувшим на землю потенциалом провода. Он оказывается под влиянием разности потенциалов между точкой касания рукой и контуром земли, которая выражается напряжением прикосновения Uпр.

    В этой ситуации ток вычисляют по выражению: Ih=(Uф.з.∙α )/ Rh

    Значения коэффициента растекания α могут меняться в пределах 0÷1 и учитывают характеристики, влияющие на Uпр.

    В рассмотренной ситуации действуют те же выводы, что и при создании однофазного контакта пострадавшим в нормальном режиме эксплуатации электроустановки.

    Если же человек расположен за пределами зоны растекания тока, то он находится в безопасной зоне.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Введение

    Изучить условия электротравматизма на производстве и в быту при эксплуатации электрооборудования.

    Определить силу тока, протекающего через тело человека, в сетях с различным режимом нейтрали при прикосновении человека к корпусу электроустановки, находящейся под напряжением.

    Определить силу тока, проходящего через тело человека, в сетях с различным режимом нейтрали при прикосновении человека к корпусу электроустановки при наличии защитного заземления.

    Определить силу тока короткого замыкания, необходимую для расплавления предохранителей и срабатывания системы зануления.

    4.1. Основные положения

    С ростом энерговооруженности промышленных предприятий и дальнейшей электрификацией жизни возрастает число людей, контактирующих с электрооборудованием. В связи с этим возможность поражения людей электрическим током, как в производственных условиях, так и в быту, повышается, особенно если электротехническое оборудование неисправно или эксплуатируется с нарушением действующих правил. Кроме того, опасность поражения электротоком отличается от прочих производственных опасностей (токсичные вещества, нагретые поверхности, шум и т.д.) тем, что человек не в состоянии ее обнаружить дистанционно без специальных измерительных приборов.

    Статистика производственного электротравматизма в качестве источников опасности называет:

    · аварийность технологического процесса (оборудования) - 36%;

    · ошибки (неправильные действия персонала) - 60%;

    · опасные природные явления (молнии) - 4%.

    · При анализе опасных условий труда, ведущих к электротравматизму выделяют:

    · присутствие персонала в зоне действия опасного фактора;

    · ошибочные (неправильные) действия персонала в опасных условиях труда;

    · опасный ток в цепи включения тела человека.

    Тяжесть электротравм зависит от ряда факторов: силы протекающего тока, пути его прохождения, рода и частоты тока, напряжения, электрического сопротивления тела человека, длительности протекания тока, здоровья и индивидуальных особенностей человека, а также от окружающей среды и т.д.

    Величина протекающего через тело человека тока является основным фактором, от которого зависит исход поражения. Наименьшее значение ощутимого тока, которое зависит от рода тока, состояния человека, вида включения его в цепь, называется пороговым ощутимым током. Для промышленной частоты 50 Гц его величина в среднем составляет 1 мА. При увеличении силы тока до 10-15 мА в мышцах рук возникают болезненные судороги, поэтому человек не способен контролировать их действие и самостоятельно освободиться от зажатого в руке проводника (электрода). Величина тока 10 мА называется пороговым неотпускающим током.

    Существенное влияние на исход поражения электрическим током оказывает путь его прохождения в теле человека («петля» тока). В специальной литературе описано 15 путей, однако наиболее вероятные пути протекания тока таковы: рука - рука (до 40%), правая рука - ноги (до 20%), нога - нога. В этом случае через сердце человека протекает от 0,4 до 7% общего тока.

    Весьма значительное влияние на величину тока, проходящего через тело человека, оказывает полное электрическое сопротивление его тела, которое при сухой неповрежденной коже может колебаться в весьма широких пределах: от 103 до 105 Ом, а иногда и более. Оно является нелинейной величиной и зависит от ряда факторов: состояния кожи (сухая, влажная, чистая, поврежденная), плотности и площади контакта с токоведущими частями, силы проходящего тока и приложенного напряжения, времени воздействия тока. При расчете условий электробезопасности человека его полное электросопротивление Rчл принимают равным 1000 Ом.

    Зная электросопротивление тела человека и интервал опасных для него токов, можно определить и интервал опасных напряжений. Так, для регламентированных значений порогового неотпускающего тока 10 мА и Rчл = 1000 Ом безопасным напряжением будет Uбез = Rч Iч = 10 В.

    Окружающая среда и обстановка в помещении могут усилить или ослабить воздействие электрического тока, поскольку существенно влияют на сопротивление тела человека, изоляцию токоведущих частей. В соответствии с этим существует определенная классификация помещений по опасности поражения током. Производственные и бытовые помещения подразделяют на три класса: 1 - без повышенной опасности; 2 - с повышенной опасностью; 3 - особо опасные. Детальный анализ этих классов приведен в учебнике.

    Для защиты человека от поражения электрическим током при работе с электроустановками применяются отдельно или в сочетании друг с другом различные технические способы, из которых отметим только:

    · изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная);

    · малое напряжение в электрических цепях;

    · защитное заземление;

    · зануление;

    · защитные средства и предохранительные приспособления.

    При изучении причин поражения током необходимо различать прямой контакт с токоведущими частями электроустановок и косвенный. Первый, как правило, возникает при грубейших нарушениях действующих Правил технической эксплуатации и правил техники безопасности электроустановок (ПТЭ и ПТБ), второй - в результате аварийных ситуаций, например при пробое изоляции.

    Схемы включения человека в электрическую цепь могут быть различными. Однако наиболее распространенными являются две: между двумя различными проводами - двухфазное включение и между одним проводом или корпусом электроустановки, одна фаза которой пробита, и землей - однофазное включение. Статистика показывает, что наибольшее число электротравм происходит при однофазном включении, причем большинство из них в сетях напряжением 380/220 В.

    4.2. Определение силы тока, протекающего через тело человека, в сетях с различным режимом нейтрали при прикосновении человека к корпусу электроустановки, находящейся под напряжением

    При однофазном включении человека в сеть (рис.4.1, 4.2) сила тока во многом определяется режимом нейтрали источника тока.

    Нейтраль - это точка соединения обмоток трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через аппараты с большим сопротивлением (сеть с изолированной нейтралью), либо непосредственно соединенная с заземляющим устройством - сеть с глухозаземленной нейтралью.

    Корпуса электрических машин, наружные поверхности электрического оборудования и другие металлические нетоковедущие части могут оказаться под напряжением при замыкании на корпус.

    Кроме того, при однофазном включении величина тока, проходящего через тело человека, зависит от сопротивления изоляции проводов сети относительно земли, пола, на котором стоит человек, сопротивления его обуви (диэлектрических галош, бот) и некоторых других факторов.

    4.2.1. Определение силы тока, протекающего через тело человека, в сети с изолированной нейтралью

    В сети с изолированной нейтралью (рис.4.1) ток, проходящий через тело человека в землю, возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением.

    Рис.4.1. Однофазное включение человека в трехфазную сеть с изолированной нейтралью:

    a, b, c - фазы; Uф - фазное напряжение; Uл - линейное напряжение; Iчл - ток, протекающий через тело человека; Ia, Ib, Ic - токи, стекающие на землю через сопротивления изоляции фазы (токи утечки); Rа, Rb, Rc - сопротивления изоляции фаз a, b, c относительно земли; - обозначение пробоя на корпус (в данном случае с фазы а)

    В этом случае, ток, проходящий через тело человека Iчл (А), может быть определен по формуле:

    Iчл = Uф / (Rчл + Rоб + Rп + Rиз/3) (4.1.)

    где Uф - фазное напряжение, т.е. напряжение между началом и концом одной обмотки (или между фазным и нулевым проводом в случае глухозаземленной нейтрали)), В;

    Rчл - сопротивление тела человека, Ом;

    Rоб - сопротивление обуви, Ом;

    Rп - сопротивление пола, Ом;

    Rиз - сопротивление изоляции одной фазы относительно земли, Ом.

    Пример 4.1

    При наиболее неблагоприятном варианте, когда человек имеет проводящую ток обувь (сырая или имеет металлические набойки, следовательно, Rоб = 0), стоит на токопроводящем полу (земляной или металлический, следовательно, Rп = 0) при Uф =220 В, Rчл = 1 кОм и сопротивлении изоляции одной фазы относительно земли Rиз = 90 кОм величина тока Iчл (А) составит:

    Iчл = 220/(1000+0+0+90000/3) = 0,007 А = 7 мА - ощутимый ток

    Пример 4.2

    Если учесть, что обувь непроводящая (например, галоши, Rоб = 45 кОм), пол - деревянный, Rп = 100 кОм при Uф =220 В, Rчл = 1 кОм и Rиз = 90 кОм величина тока Iчл (А) в этом случае составит:

    Iчл = 220/(1000+45000+0+90000/3) = 0,00125 А = 1,25 мА - ощутимый ток

    Таким образом, в сети с изолированной нейтралью ток, проходящий через человека - ощутимый и условия безопасности во многом будут зависеть от сопротивления изоляции проводов относительно земли.

    4.2.2. Определение силы тока, протекающего через тело человека, в сети с глухозаземленной нейтралью

    В сети с глухозаземленной нейтралью (рис.4.2) цепь тока, проходящего через человека, помимо сопротивлений тела человека, его обуви и пола, на котором он стоит, включает еще и сопротивление заземления нейтрали источника тока. При этом все эти сопротивления включены последовательно.

    В этом случае Iчл (А) определяют по формуле:

    Iчл = Uф / (Rчл + Rоб + Rп + R0) (4.2.)

    где R0 - сопротивление заземления нейтрали источника тока, Ом.

    Рис.4.2. Однофазное включение человека в трехфазную сеть с глухозаземленной нейтралью:

    0 - нулевой провод; R0 - сопротивление заземления нейтрали

    Рассмотрим два примера для сети с глухозаземленной нейтралью источника тока.

    Пример 4.3

    Условия аналогичны указанным в примере 4.1: Rоб = 0, Rп = 0, Uф =220 В, Rчл = 1 кОм. Сопротивление заземления нейтрали в соответствии Правилами устройства электроустановок R0 ? 10 Ом, что значительно меньше сопротивления тела человека, следовательно, величиной R0 можно пренебречь (R0 = 0). В этом случае величина тока Iчл (А) составит:

    Iчл = 220/(1000+0+0+0) = 0,22 А = 220 мА - смертельный ток

    Пример 4.4

    Условия аналогичны указанным в примере 4.2: Rоб = 45 кОм, Rп = 100 кОм, Uф =220 В, Rчл = 1 кОм, R0 = 0. Величина тока Iчл (А) составит:

    Iчл = 220/(1000+45000+100000+0) = 0,0015 А = 1,5 мА - ощутимый ток

    В примере 4.3 ток смертельно опасен для человека, в примере 4.4 ток не опасен для человека, что показывает, какое исключительное значение имеет для безопасности работающих непроводящая ток обувь и, в особенности, изолирующий пол.

    4.2.3. Выбор схемы сети

    Выбор схемы сети (режима нейтрали источника тока) определяется технологическими требованиями и условиями безопасности.

    По технологическим требованиям предпочтение отдается четырехпроводной сети с глухозаземленной нейтралью, т.к. в ней возможно использование двух рабочих напряжений - линейного и фазного, например 380/220 В, где 380 В - линейное напряжение, а 220 В - фазное.

    По условиям безопасности в период нормального режима работы сети более безопасна, как правило, сеть с изолированной нейтралью (примеры 4.1, 4.2), а в аварийный период - сеть с глухозаземленной нейтралью, т.к. в случае аварии (когда одна из фаз замкнута на землю) в сети с изолированной нейтралью напряжение неповрежденной фазы относительно земли может возрасти с фазного до линейного (Uл =1,73 Uф), в то время как в сети с глухозаземленной нейтралью повышение напряжения может быть незначительным.

    4.3. Определение силы тока, проходящего через тело человека, в сетях с различным режимом нейтрали при прикосновении человека к корпусу электроустановки при наличии защитного заземления

    Защитное заземление - это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей электроустановок (чаще всего корпуса), не находящихся под напряжением в обычных условиях, но которые могут оказаться под напряжением в случае пробоя фазы на корпус или повреждения изоляции электроустановки и к которым возможно прикосновение людей (рис.4.3).

    Задача защитного заземления - устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением.

    Рис.4.3. Схема защитного заземления в сети напряжением до 1000 В с глухозаземленной (а) и изолированной (б) нейтралью:

    Rз - сопротивление заземляющего устройства, Rчл - сопротивление тела человека, Zi - полное сопротивление одной фазы относительно земли.

    Принцип действия защитного заземления состоит в превращении «пробоя на корпус» в «пробой на землю» для уменьшения напряжения между корпусом, оказавшимся под напряжением, и землей до безопасных величин с помощью заземлителя, через который уходит большая часть тока, за счет значительно более низкого электросопротивления (по ГОСТ Rз = 4 - 10 Ом) по сравнению с сопротивлением тела человека (Rчл = 1 кОм).

    Если корпус электрооборудования не заземлен и оказался в контакте с фазой, то прикосновение к нему равносильно прикосновению к фазе. В этом случае ток, проходящий через тело человека (при малом сопротивлении обуви, пола и изоляции проводов относительно земли) может достигать опасных значений.

    Если корпус электроустановки заземлен, то ток Iчл (А), проходящий через тело человека (при Rоб = Rп = 0), можно определить по формуле сеть с изолированной нейтралью (рис.4.3 б):

    Iчл = 3 Uф Rз / Rчл Rиз (4.3.)

    сеть с глухозаземленной нейтралью (рис.4.3 а):

    Iчл = Uф Rз / Rчл (R0 + Rз) (4.4.)

    где Rз - сопротивление заземляющего устройства, Ом.

    Пример 4.5

    Исходные данные: Uф =220 В, Rчл = 1 кОм, Rиз = 90 кОм, Rз = 4 и 400 Ом. Величина тока Iчл (А) составит:

    Iчл = 3*220*4 / 1000*90000 = 2,9*10-5 А = 0,03 мА - безопасно для человека

    Iчл = 3*220*400 / 1000*90000 = 0,0029 А = 2,9 мА - безопасно для человека

    Пример 4.6

    Исходные данные: Uф =220 В, Rчл = 1 кОм, Rиз = 90 кОм, Rз = 4 и 400 Ом, R0 = 10 Ом. Величина тока Iчл (А) составит:

    Iчл = 220*4 / 1000 (10+4) = 0,063 А = 63 мА - неотпускающий ток

    Iчл = 220*400 / 1000 (10+400) = 0,215 А = 215 мА - смертельный ток

    Из примеров 4.5 и 4.6 видно, что защитное заземление применять целесообразнее в сетях с изолированной нейтралью, т.к. величина тока, проходящего через тело человека, безопасна при любых Rз, а в сети с глухозаземленной нейтралью - ток Iчл всегда опасен.

    Основным элементом заземляющего устройства является заземлитель, который может быть естественным или искусственным.

    Естественные заземлители - это электропроводящие части коммуникаций и сооружений производственного или иного назначения, находящиеся в земле, за исключением трубопроводов для горючих жидкостей и газов, трубопроводов, покрытых изоляцией для защиты от коррозии, свинцовых оболочек кабелей.

    Искусственные заземлители - это вбитые или закопанные в землю электроды, например стальные трубы диаметром 30-50 мм, угловая сталь размером от 40х40 до 60х60 мм, полосовая сталь размером не менее 4х12 мм, стальные прутки диаметром 10-12 мм и др.

    В качестве заземляющих проводников, соединяющих заземляемые части электроустановок с заземлителем, применяют медные, алюминиевые проводники или полосовую сталь. Заземляющие проводники прокладывают открыто, с хорошим доступом для осмотра. Заземляющие проводники должны иметь отличительную окраску - по зеленому фону желтые полосы шириной 15 мм на расстоянии одна от другой 150 мм. Не допускается последовательное включение заземленного оборудования.

    Согласно требованиям ГОСТ 12.1.030-81 сопротивление заземляющего устройства нормируют, оно не должно превышать в любое время года приведенных ниже значений:

    10 Ом - в стационарных сетях пожароопасных помещений с изолированной нейтралью напряжением до 1000 В;

    4 Ом - в стационарных сетях взрывоопасных помещений, в помещениях с повышенной опасностью и особо опасных с изолированной нейтралью напряжением до 1000 В.

    4.4. Зануление

    Занулением называется преднамеренное присоединение частей электроустановки, нормально не находящихся под напряжением, но которые вследствие повреждения изоляции могут оказаться под ним, к многократно заземленному нулевому проводу.

    Данный метод защиты применяют только в четырехпроводных сетях напряжением до 1000 В с глухозаземленной нейтралью, обычно в сетях 380/220 и 220/127 В. Это связано с тем, что сила тока замыкания на землю в таких сетях велика и при обычном сопротивлении заземления через человека может проходить ток большой силы. Схема зануления показана на рис.4.4.

    Задача зануления - устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением вследствие замыкания на корпус. Решается эта задача быстрым отключением поврежденной установки от сети.

    Принцип действия зануления заключается в превращении случайного пробоя фазы на корпус в однофазное короткое замыкание, т.е. замыкание между фазным и нулевым проводом с целью вызвать ток большой величины. При появлении напряжения на корпусе основная часть тока пойдет через нулевой провод и нейтраль именно в ту фазу, в которой был пробой, т.е. произойдет короткое замыкание. Большая сила тока короткого замыкания вызовет срабатывание защиты и отключит установку от питающей сети. В качестве защиты используют плавкие предохранители или автоматические выключатели с тепловыми реле.

    Рис.4.4. Принципиальная схема зануления:

    Iкз - сила тока короткого замыкания; Rн - сопротивление повторного заземления нулевого провода, Rп - сопротивление предохранителя

    Сила тока короткого замыкания Iкз (А) определяется фазным напряжением и полным сопротивлением цепи короткого замыкания:

    Iкз = Uф / (Rт/3 + Rф + Rн) (4.5.)

    где Rт - внутреннее сопротивление трансформатора, Ом;

    Rф, Rн - сопротивление фазного и нулевого проводников, Ом.

    Защиту необходимо выбирать с таким расчетом, чтобы сила тока однофазного короткого замыкания превышала не менее чем в 3 раза номинальную силу тока Iном срабатывания защитных устройств.

    Пример 4.7

    Исходные данные: Rф = Rн = 0,1 Ом; Rт = 0,003 Ом; Iном = 10 А

    Для сети напряжением 380/220 В сила тока короткого замыкания Iкз (А) составит:

    Iкз = 220 / ((0,003/3)+0,1+0,1) = 1095 А - такая сила тока неизбежно вызовет срабатывание защиты, и установка автоматически отключится от сети

    Порядок выполнения работы

    Определить силу тока Iчл, проходящего через тело человека, в электрической сети небольшой протяженности промышленной частоты с изолированной нейтралью при прикосновении человека к корпусу электроустановки при фазном напряжении Uф = 220 В и различных сопротивлениях изоляции фазных проводов (Rиз = 1; 2; 5; 10; 50; 100; 200; 400 кОм) по формуле 4.1. Результаты расчетов внести в протокол 4.1.

    Определить силу тока Iчл, проходящего через тело человека, в электрической сети небольшой протяженности промышленной частоты с глухозаземленной нейтралью при прикосновении человека к корпусу электроустановки при фазном напряжении Uф = 220 В и различных сопротивлениях тела человека (Rчл = 1; 2; 4; 5; 10; 15; 20; 50 кОм) по формуле 4.2. Результаты расчетов внести в протокол 4.2.

    По данным протоколов 4.1 и 4.2 построить два графика зависимости при заданных Rоб и Rп:

    Iчл (мА) = f (Rиз, кОм);

    Iчл (мА) = f (Rчл, кОм).

    Из графиков определить безопасные для человека значения Rиз и Rчл.

    Определить силу тока Iчл, проходящего через тело человека, в сети с изолированной нейтралью при прикосновении человека к корпусу электроустановки при наличии защитного заземления при фазном напряжении Uф = 220 В и различных по величине сопротивлениях изоляции Rиз и защитного заземления (Rз = 4; 400 Ом) по формуле 4.3. Результаты расчетов внести в протокол 4.3.

    Определить силу тока Iчл, проходящего через тело человека, в сети с глухозаземленной нейтралью при прикосновении человека к корпусу электроустановки при наличии защитного заземления при фазном напряжении Uф = 220 В и различных по величине сопротивлениях изоляции Rиз и защитного заземления (Rз = 4; 400 Ом) по формуле 4.4. Результаты расчетов внести в протокол 4.4.

    По данным протоколов 4.3 и 4.4 сделать выводы о силе тока Iчл, проходящего через тело человека, при различных по величине сопротивлениях защитных заземлений.

    Протокол 4.1.

    Uф = 220 В; Rчл = ______ кОм; Rоб = ______ кОм; Rп = ______ кОм

    Протокол 4.2.

    Uф = 220 В; R0 = ______ кОм; Rоб = ______ кОм; Rп = ______ кОм

    Протокол 4.3.

    Uф = _______В; Rчл = ______ кОм

    Iчл, А при Rз = 4 Ом

    Iчл, А при Rз = 400 Ом

    Протокол 4.4.

    Uф = 220 В; Rчл = ______ кОм; R0 = _______ кОм

    Iчл (Rз = 4 Ом) = __________А = __________мА

    Iчл (Rз = 400 Ом) = ________А = __________мА

    Задание к работе № 4

    Вариант задания соответствует № студента по журналу кафедры (табл.4.1).

    Таблица 4.1.

    № по журналу

    Подобные документы

      Методы расчета одиночного вертикального заземлителя. Способы определения напряжения прикосновения при разных значениях тока. Особенности его прохождения через тело человека. Расчет защитного заземления. Характеристика контурного заземляющего устройства.

      контрольная работа , добавлен 15.10.2010

      Теоретическое обоснование проведения защитных заземлений и занулений. Необходимость проведения защитного заземления и зануления. Расчет защитного заземления подстанций, зануления двигателя. Устройства, применяемые в данных процессах, их применение.

      курсовая работа , добавлен 28.03.2011

      Действие электрического тока на организм человека. Факторы, определяющие исход поражения электрическим током. Влияния частоты на организм человека. Продолжительность действия тока. Схема, принцип действия и область применения защитного зануления.

      контрольная работа , добавлен 14.04.2016

      Расчет общего искусственного освещения рабочего помещения методом светового потока. Расчет искусственного защитного заземления для участков, в которых эксплуатируются электроустановки. Конструкция звукопоглощающей облицовки и расчет снижения шума.

      контрольная работа , добавлен 28.11.2012

      Сущность защитного заземления, его применение для защиты человека от опасности поражения электрическим током. Устройство и выполнение заземления, нормирование его параметров, расчет и определение числа заземлителей и длины соединительной полосы.

      практическая работа , добавлен 18.04.2010

      Действие электрического тока на организм челоека и порог ощутимого тока. Основные требования, предъявляемые к электробезопасности аппаратуры. Возникновение напряжения прикосновения при пробое на незащищенный корпус. Защитное заземление и зануление.

      курсовая работа , добавлен 24.06.2011

      Опасность воздействия на людей электрического тока. Защитное заземление как основная мера защиты металлоконструкции. Состав заземления, обозначения системы заземления на схемах. Виды систем заземления. Принцип действия зануления, системы зануления.

      реферат , добавлен 19.11.2010

      Требования в области вентиляции при сварочных работах. Проверка прочности щитка со смотровым окном. Фактическая и контрольная пылевая нагрузка. Величина тока, протекающая через тело человека при прикосновении его к оголенному проводу трехфазной сети.

      контрольная работа , добавлен 14.02.2012

      Основные источники финансирования мероприятий по улучшению условий и охраны труда. Выполнение защитного отключения электроустановки при возникновении утечки тока. Периодичность проверки заземляющих устройств. Первая помощь при отравлении аммиаком.

      контрольная работа , добавлен 07.12.2010

      Условия возникновения электротравматизма. Влияние контактной сети переменного тока на металлические сооружения. Обеспечение электробезопасности при обслуживании электроустановок. Назначение, принцип действия и область применения защитного заземления.

    Исследование опасности поражения человека током в трёхфазных электрических сетях напряжением до 1000 В

    Цель работы:

    Ознакомиться с приёмами исследования опасности поражения током в трёхфазных сетях переменного тока напряжением до 1000 в и изучить технические способы защиты от такого поражения.

    Порядок выполнения

    1. Ознакомиться с общими сведениями.
    2. Оценить согласно варианту (табл. 1) по величине тока, проходящего через тело человека, опасность прикосновения к фазе двух типов трёхфазных электросетей:
    • четырёхпроводной с глухозаземлённой нейтралью
    • трёхпроводной с изолированной нейтралью

    В каждой сети рассмотреть с использованием эквивалентных схем по два случая прикосновения:

    • с учётом сопротивления обуви (Rоб) и пола (Rпол);
    • без учёта сопротивления Rоб и Rпол (принять их равными нулю) и сделать вывод о влиянии этих сопротивлений на степень поражение электрическим током.

    3. Сравнить между собой трёхфазные электросети по степени опасности поражения человека током.

    4. Ознакомиться и законспектировать сведения о причинах поражения электрическим током и технических способах и средствах защиты от поражения ими.

    Общие сведения

    Известно, что электрическая энергия удобнее и безопаснее любой из известных форм энергий. Однако и при её использовании существуют определённая вероятность поражения человека током.

    Все случаи поражения человека током являются результатом замыкания электрической цепи через его тело, или, иначе говоря, результатом прикосновения человека к двум точкам цепи, между которыми существует напряжение. Опасность такого прикосновения оценивается силой тока (Ih), проходящего через тело человека. Величину силы тока определяет закон Ома:

    где U - напряжение, под которое попал человек, В;

    R - полное сопротивление участка цепи, элементом которой стал человек, Ом.

    Из формулы (1) видно, что сила зависит от двух величин – напряжение и сопротивления. Такая зависимость подсказывает два главных подхода в обеспечении безопасности человека от поражения током – снижение напряжения и увеличение сопротивления. Однако, это самые общие соображения.

    Углубляясь же в анализ условий поражения человека током, можно отметить, что степень поражения человека электрическим током зависит от того:

    • в какую электрическую сеть он включился;
    • каким оказалось включение.

    В системе энергоснабжения используются два вида электросетей:

    • трёхфазная электросеть с глухозаземлённой нейтралью (4-х проводная);
    • трёхфазная электросеть с изолированной нейтралью (3-х проводная).

    Глухозаземлённой нейтралью называется нейтраль трансформатора или генератора, присоединённая к заземляющему устройству непосредственно или через малое сопротивление (2 – 8 Ом).

    Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая через аппараты, компенсирующие ёмкостный ток в сети, трансформатор напряжения или другие аппараты, имеющие большое сопротивление.

    Прикосновение (включение) к токоведущим элементам в трёхфазных сетях может быть однофазным и двухфазным.

    Однофазное включение – это прикосновение к одной фазе электроустановки, находящейся под напряжением.

    При этом электрическая цепь тока, проходящего через человека, включает в себя, кроме сопротивления тела человека (Rh), также сопротивление пола (Rпол), сопротивление обуви (Rоб) и заземление нейтрали источника тока (Rо).

    В случае прикосновения человека к фазному проводу трёхфазной сети с глухозаземлённой нейтралью ток будет:

    , (2)

    где U ф - фазное напряжение, В = 220;

    U л - линейное напряжение, В = 380;

    А в случае прикосновения человека к фазному проводу трёхфазной сети с изолированной нейтралью ток будет:

    , (3)

    где R u - сопротивление изоляции проводов.

    Двухфазное включение - это одновременное прикосновение к двум фазам электроустановки, находящейся под напряжением. При этом человек находится под линейным напряжением, которое в раза больше фазного. Такое включение наиболее опасно. Силу тока, проходящего через тело человека, определяют при этом соотношением:

    , (4)

    где, обозначения те же.

    Задачи

    N 1. Определить по варианту (табл. 1) силу тока, проходящего через тело человека, при однофазном его прикосновении к неизолированным токоведущим частям трёхфазной электросети с глухозаземлённой нейтралью с учётом и без учёта сопротивлений пола и обуви. После расчётов сделать вывод об их влиянии на степень поражения электрическим током.

    N 2. Определить по варианту (табл. 1) силу тока, проходящего через тело человека, при однофазном его прикосновении к неизолированным токоведущим частям электросети с изолированной нейтралью с учётом и без учёта сопротивлений пола и обуви. По результатам расчётов сделать вывод о влиянии сопротивлений пола и обучи на степень опасности поражения током, а также сравнить по степени электробезопасности оба типа электросетей.

    Таблица 1

    Показатели Варианты
    1 2 3 4 5 6 7 8 9 10
    Сопротивление тела человека, R h (кОм) 1.2 0.9 1.1 1.0 1.3 0.8 0.9 1.25 1.5 1.35
    Сопротивление изоля-ции проводов, R u (кОм) 500 700 600 550 750 800 900 1200 850 1000
    Сопротивление пола R пол (кОм) 1.4 1.6 2.2 2.0 1.8 1.5 2.5 2.4 3.0 3.5
    Сопротивление обуви, R об (кОм) 1.5 7.5 5.5 6.0 2.5 3.0 4.0 1.9 5.0 4.8

    Основные причины поражения человека электрическим током

    1. Случайное прикосновение или приближение на опасное расстояние к токоведущим частям электроустановки.
    2. Прикосновение к незаземлённым корпусам машин и трансформаторов с повреждённой изоляцией.
    3. Несоблюдение правил технической эксплуатации электроустановок.
    4. Работа с неисправными ручными электроинструментами.
    5. Работа без защитных изолирующих и предохранительных приспособлений.
    6. Шаговое напряжение на поверхности земли в результате обрыва токонесу-щего провода.

    Технические способы защиты от поражения электрическим током.

    1. Защитное заземление – это преднамеренное электрическое соединение с землёй или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Суть заземления заключается в том, что все конструкции из металла, могущие оказаться под напряжением, соединяют с заземляющим устройством через малое сопротивление. Это сопротивление должно быть во много раз меньше, чем сопротивление человека (R h = 1000 кОм). В случае замыкания на корпус аппарата основная часть тока пройдёт через заземляющее устройство (рис. 4).
    2. Защитное зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Такое электрическое соединение превращает всякое замыкание токоведущих частей на землю в однофазное короткое замыкание, а это обеспечивает срабатывание «защиты» (предохранителей, автоматов и пр.), отключение повреждённой установки от питающей сети (рис. 5).
    3. Защитное отключение . При нём используют реле напряжения, соеди-нённое с металлическими нетоковедущими частями оборудования, которые могут оказаться под напряжением. При замыкании фазы на корпус, при снижении сопротивления изоляции фаз или при появлении в сети более высокого напряжения происходит автоматическое отключение электроустановки от источника питания (рис. 6).
    4. Выравнивание потенциалов . Для этого снижают напряжение (сближают потенциалы) между точками электрической цепи, к которым человек может прикоснуться и на которых может стоять.
    5. Малые напряжения (не более 420 В) уменьшают опасность поражения человека электрическим током. Их используют для питания электроинструмента, светильников местного освещения, переносных ламп в помещениях с повышенной опасностью и особо опасных.
    6. Электрическое разделение сети . Сеть разделяют на отдельные, не связанные между собой участки, с использованием раздельных трансформаторов (на каждый электроприёмник свой трансформатор). Эти трансформаторы электроприёмники от общей сети и, следовательно, предотвращают воздействие на них токов утечки, замыканий на землю. Тем самым исключаются условия, которые могут привести к электротравме.
    7. Изоляция - обеспечивает недоступность к токоведущим частям электроустановки. Исправная изоляция – основное условие электробезопасности. Однако в процессе эксплуатации изоляция подвергается воздействиям, приводящим её к старению. Главное из них – нагревание её рабочими и пусковыми токами, токами короткого замыкания или от посторонних источников. Нужен периодический контроль её состояние. Сопротивление изоляции не должно быть менее 0.5 мОм.
    8. Ограждение токоведущих частей чаще всего предусматривается конструкцией электрооборудования. Корпуса, кожухи, щитки препятствуют случайным прикосновениям к ним. Голые провода, шины, открытые приборы и аппараты помещают в шкафы, ящики или закрывают сплошным или сетчатым ограждением (высотой 1.7 – 2 м).
    9. Блокировка не позволяет открыть ограждения, когда электроустановка под напряжением и автоматически снимает напряжение при раскрытии ограждения.
    10. Сигнализация световая и звуковая применяется в электроустановках в сочетании с другими мерами защиты от поражения электрическим током.
    11. Средства защиты при обслуживании электроустановок. К ним относятся: изолирующие штанги, измерительные и электроизмерительные клещи, указатели напряжения, диэлектрические перчатки и инструменты с изолирующими ручками, а так же диэлектрические колпаки, галоши, коврики, изолирующие подставки, переносные заземления, оградительные устройства, плакаты и знаки безопасности. Кроме перечисленных электрозащитных средств при необходимости применяются индивидуальные средства защиты (очки, каски, противогаз, рукавицы, предохранительные монтёрские пояса, страховочные канаты).