Уравнения высших степеней профильный уровень уравнения. Старт в науке. Уравнения высшей степени с целыми коэффициентами

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике довольно часто встречаются уравнения высших степеней с целыми коэффициентами. Чтобы решить данного рода уравнения необходимо:

Определить рациональные корни уравнения;

Разложить на множители многочлен, который находится в левой части уравнения;

Найти корни уравнения.

Допустим, нам дано уравнение следующего вида:

Найдем все действительные его корни. Умножим левую и правую части уравнения на \

Выполним замену переменных \

Таким образом, у нас получилось приведенное уравнение четвертой степени, которое решается по стандартному алгоритму: проверяем делители, проводим деление и в результате выясняем, что уравнение имеет два действительных корня \ и два комплексных. Получим следующий ответ нашего уравнения четвертой степени:

Где можно решить уравнение высших степеней онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Рассмотрим решения уравнений с одной переменной степени выше второй.

Степенью уравнения Р(х) = 0 называется степень многочлена Р(х), т.е. наибольшая из степеней его членов с коэффициентом, не равным нулю.

Так, например, уравнение (х 3 – 1) 2 + х 5 = х 6 – 2 имеет пятую степень, т.к. после операций раскрытия скобок и приведения подобных получим равносильное уравнение х 5 – 2х 3 + 3 = 0 пятой степени.

Вспомним правила, которые понадобятся для решения уравнений степени выше второй.

Утверждения о корнях многочлена и его делителях:

1. Многочлен n-й степени имеет число корней не превышающее число n, причем корни кратности m встречаются ровно m раз.

2. Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Если α – корень Р(х), то Р n (х) = (х – α) · Q n – 1 (x), где Q n – 1 (x) – многочлен степени (n – 1).

4.

5. Приведенный многочлен с целыми коэффициентами не может иметь дробных рациональных корней.

6. Для многочлена третьей степени

Р 3 (х) = ах 3 + bx 2 + cx + d возможно одно из двух: либо он разлагается в произведение трех двучленов

Р 3 (x) = а(х – α)(х – β)(х – γ), либо разлагается в произведение двучлена и квадратного трехчлена Р 3 (x) = а(х – α)(х 2 + βх + γ).

7. Любой многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов.

8. Многочлен f(x) делится на многочлен g(х) без остатка, если существует многочлен q(x), что f(x) = g(x) · q(x). Для деления многочленов применяется правило «деления уголком».

9. Для делимости многочлена P(x) на двучлен (x – c) необходимо и достаточно, чтобы число с было корнем P(x) (Следствие теоремы Безу).

10. Теорема Виета: Если х 1 , х 2 , …, х n – действительные корни многочлена

Р(х) = а 0 х n + а 1 х n - 1 + … + а n , то имеют место следующие равенства:

х 1 + х 2 + … + х n = -а 1 /а 0 ,

х 1 · х 2 + х 1 · х 3 + … + х n – 1 · х n = a 2 /а 0 ,

х 1 · х 2 · х 3 + … + х n – 2 · х n – 1 · х n = -a 3 / а 0 ,

х 1 · х 2 · х 3 · х n = (-1) n a n / а 0 .

Решение примеров

Пример 1.

Найти остаток от деления Р(х) = х 3 + 2/3 x 2 – 1/9 на (х – 1/3).

Решение.

По следствию из теоремы Безу: «Остаток от деления многочлена на двучлен (х – с) равен значению многочлена от с». Найдем Р(1/3) = 0. Следовательно, остаток равен 0 и число 1/3 – корень многочлена.

Ответ: R = 0.

Пример 2.

Разделить «уголком» 2х 3 + 3x 2 – 2х + 3 на (х + 2). Найти остаток и неполное частное.

Решение:

2х 3 + 3x 2 – 2х + 3| х + 2

2х 3 + 4 x 2 2x 2 – x

X 2 – 2 x

Ответ: R = 3; частное: 2х 2 – х.

Основные методы решения уравнений высших степеней

1. Введение новой переменной

Метод введения новой переменной уже знаком на примере биквадратных уравнений. Он заключается в том, что для решения уравнения f(x) = 0 вводят новую переменную (подстановку) t = x n или t = g(х) и выражают f(x) через t, получая новое уравнение r(t). Решая затем уравнение r(t), находят корни:

(t 1 , t 2 , …, t n). После этого получают совокупность n уравнений q(x) = t 1 , q(x) = t 2 , … , q(x) = t n , из которых находят корни исходного уравнения.

Пример 1.

(х 2 + х + 1) 2 – 3х 2 – 3x – 1 = 0.

Решение:

(х 2 + х + 1) 2 – 3(х 2 + x) – 1 = 0.

(х 2 + х + 1) 2 – 3(х 2 + x + 1) + 3 – 1 = 0.

Замена (х 2 + х + 1) = t.

t 2 – 3t + 2 = 0.

t 1 = 2, t 2 = 1. Обратная замена:

х 2 + х + 1 = 2 или х 2 + х + 1 = 1;

х 2 + х - 1 = 0 или х 2 + х = 0;

Ответ: Из первого уравнения: х 1, 2 = (-1 ± √5)/2, из второго: 0 и -1.

2. Разложение на множители методом группировки и формул сокращенного умножения

Основа данного метода также не нова и заключается в группировке слагаемых таким образом, чтобы каждая группа содержала общий множитель. Для этого иногда приходится применять некоторые искусственные приемы.

Пример 1.

х 4 – 3x 2 + 4х – 3 = 0.

Решение.

Представим - 3x 2 = -2x 2 – x 2 и сгруппируем:

(х 4 – 2x 2) – (x 2 – 4х + 3) = 0.

(х 4 – 2x 2 +1 – 1) – (x 2 – 4х + 3 + 1 – 1) = 0.

(х 2 – 1) 2 – 1 – (x – 2) 2 + 1 = 0.

(х 2 – 1) 2 – (x – 2) 2 = 0.

(х 2 – 1 – х + 2)(х 2 – 1 + х - 2) = 0.

(х 2 – х + 1)(х 2 + х – 3) = 0.

х 2 – х + 1 = 0 или х 2 + х – 3 = 0.

Ответ: В первом уравнении нет корней, из второго: х 1, 2 = (-1 ± √13)/2.

3. Разложение на множитель методом неопределенных коэффициентов

Суть метода состоит в том, что исходный многочлен раскладывается на множители с неизвестными коэффициентами. Используя свойство, что многочлены равны, если равны их коэффициенты при одинаковых степенях, находят неизвестные коэффициенты разложения.

Пример 1.

х 3 + 4x 2 + 5х + 2 = 0.

Решение.

Многочлен 3-й степени можно разложить в произведение линейного и квадратного множителей.

х 3 + 4x 2 + 5х + 2 = (х – а)(x 2 + bх + c),

х 3 + 4x 2 + 5х + 2 = х 3 +bx 2 + cх – ax 2 – abх – ac,

х 3 + 4x 2 + 5х + 2 = х 3 + (b – a)x 2 + (cх – ab)х – ac.

Решив систему:

{b – a = 4,
{c – ab = 5,
{-ac = 2,

{a = -1,
{b = 3,
{c = 2, т.е.

х 3 + 4x 2 + 5х + 2 = (х + 1)(x 2 + 3х + 2).

Корни уравнения (х + 1)(x 2 + 3х + 2) = 0 находятся легко.

Ответ: -1; -2.

4. Метод подбора корня по старшему и свободному коэффициенту

Метод опирается на применение теорем:

1) Всякий целый корень многочлена с целыми коэффициентами является делителем свободного члена.

2) Для того, чтобы несократимая дробь p/q (p – целое, q – натуральное) была корнем уравнения с целыми коэффициентами, необходимо, чтобы число p было целым делителем свободного члена а 0 , а q – натуральным делителем старшего коэффициента.

Пример 1.

6х 3 + 7x 2 – 9х + 2 = 0.

Решение:

6: q = 1, 2, 3, 6.

Следовательно, p/q = ±1, ±2, ±1/2, ±1/3, ±2/3, ±1/6.

Найдя один корень, например – 2, другие корни найдем, используя деление уголком, метод неопределенных коэффициентов или схему Горнера.

Ответ: -2; 1/2; 1/3.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Методы решения алгебраических уравнений высших степеней.

Хабибуллина Альфия Якубовна ,

учитель математики высшей категории МБОУ СОШ №177

города Казани, Заслуженный учитель Республики Татарстан,

кандидат педагогических наук.

Определение 1. Алгебраическим уравнением степени n называется уравнение вида P n (x)=0, где P n (x) - многочлен степени n, т.е. P n (x)= a 0 x n +a 1 x n-1 +…+a n-1 x+a n a 0.

Определение 2. Корень уравнения – числовое значение переменной х, которое при подстановке в данное уравнение дает верное равенство.

Определение 3. Решить уравнение означает найти все его корни или доказать, что их нет.

I. Метод разложения многочлена на множители с последующим дроблением .

Уравнение можно разложить на множители и решить методом дробления, то есть, разбивая на совокупность уравнений меньших степеней.

Замечание : вообще, при решении уравнения методом дробления не следует забывать, что произведение равно нулю тогда, и только тогда, когда хотя бы один из множителей равен нулю, а другие при этом сохраняют смысл.

Пути разложения многочлена на множители :

1. Вынесение общего множителя за скобки.

2. Квадратный трехчлен можно разложить на множители с помощью формулы ах 2 +вх+с=а(х-х 1 )(х-х 2 ), где а0, х 1 и х 2 – корни квадратного трехчлена.

3. Использование формул сокращенного умножения :

а n – в n = (а - в)(а n-1 + Сn- 2 а n-2 в + Сn- 3 а n-3 в + …+ С 1 а в n-2 +в n-1), nN.

Выделение полного квадрата . Многочлен можно разложить на множители с помощью формулы разности квадратов, предварительно выделив полный квадрат суммы или разности выражений.

4. Группировка (в сочетании с вынесением общего множителя за скобки).

5. Использование следствия теоремы Безу .

1)если уравнение а 0 х n + a 1 x n-1 +…+ a n-1 x + a n = 0 , a 0 0 c целыми коэффициентами имеет рациональный корень х 0 = (где - несократимая дробь, p
q
), то p –делитель свободного члена a n , а q – делитель старшего коэффициента a 0 .

2)если х = х 0 – корень уравнения Р n (х) = 0, то Р n (х) = 0 равносильно уравнению

(х – х 0)Р n-1 (х)=0, где Р n-1 (х) – многочлен, который можно найти при делении

Р n (х) на (х – х 0) “уголком” или методом неопределенных коэффициентов.

II . Метод введения новой переменной (Подстановка )

Рассмотрим уравнение f(x)=g(x). Оно равносильно уравнению f(x)-g(х) = 0. Обозначим разность f(x)-g(х) = h(р (x)), причем
. Введем замену t=р (x) (функция t= р(x) называется подстановка ). Тогда получим уравнение h(р (x)) =0 или h(t)=0 , решив последнее уравнение, находим t 1 , t 2 , … Вернувшись в подстановку р(x)=t 1 , р(x)=t 2 ,…, находим значения переменной х.

III Метод строгой монотонности.

Теорема. Если у= f(x) строго монотонна на P, то уравнение f(x)=а (а - const) имеет на множестве Р не более одного корня. (Функция строго монотонная: либо только убывающая, либо только возрастающая)

Замечание. Можно использовать модификацию этого метода. Рассмотрим уравнение f(x)=g(x). Если функция у= f(x) монотонно убывает на P, а функция у= g(x) монотонно убывает на Р (или наоборот), то уравнение f(x)=g(x) имеет на множестве Р не более одного корня.

IV . Метод сравнения множества значений обеих частей уравнения (метод оценки)

Теорема Если для любого x из множества P выполняются неравенства f(x)а, и g(x)а, то уравнение f(x)=g(x) на множестве Р равносильно системе
.

Следствие : Если на множестве Р
или
, то уравнение f(x)=g(x) не имеет корней.

Этот метод достаточно эффективен при решении трансцендентных уравнений

V . Метод перебора делителей крайних коэффициентов

Рассмотрим уравнение a 0 x n +a 1 x n-1 +…+a n-1 x+a n = 0

Теорема. Если x 0 = - корень алгебраического уравнения степени n, а i – целые коэффициенты, то p – делитель свободного члена а n , а q – делитель старшего коэффициента a 0 . При а 0 =1 x 0 =p (делитель свободного члена).

Следствие теоремы Безу: Если х 0 – корень алгебраического уравнения, то P n (x) делится на (x-x 0) без остатка, т.е P n (x)=(x-x 0)Q n-1 (x).

VI Метод неопределенных коэффициентов.

Он базируется на следующих утверждениях:

два многочлена тождественно равны тогда и только тогда, когда равны их коэффициенты при одинаковых степенях х.

любой многочлен третьей степени разлагается в произведение двух множителей: линейного и квадратного.

любой многочлен четвертой степени разлагается в произведение двух многочленов

второй степени.

VII. Схема Горнера .

С помощью таблицы коэффициентов по алгоритму Горнера подбором находятся корни уравнения среди делителей свободного члена.

VIII . Метод производных.

Теорема. Если 2 многочлена P(x) и Q(x) имеют тождественно равные производные, то существует такая С- const, что P(x)=Q(x)+С для xR.

Tеорема . Если
(x) и
(x) делятся на
, то
(x) делится на
.

Следствие : Если
(x) и
(x) делятся на многочлен R(x) , то
(x) делится на (x), а наибольший общий делитель многочленов
(x) и
(x)имеет корни, являющиеся лишь корнями многочлена
(x) кратностью не менее 2.

IX . Симметрические, возвратные уравнения .

Определение . Уравнение a 0 x n +a 1 x n-1 +…+a n-1 x+a n = 0 называется симметрическим , если

1. Рассмотрим случай, когда n-четное, n =2k. Если
, тогда x = 0 не является корнем уравнения, что дает право разделить уравнение на

0
+
+
+=0 Введем замену t=
и, учитывая лемму, решим квадратное уравнение относительно переменной t. Обратная подстановка даст решение относительно переменной х.

2. Рассмотрим случай, когда n-нечетное, n=2k+1. Тогда = -1 является корнем уравнения. Разделим уравнение на
и получаем случай 1.. Обратная подстановка позволяет найти значения х. Заметим, что при m=-1 уравнение называется Преобразуем алгебраическое уравнение P n (x)=0 (где P n (x)- многочлен степени n) в уравнение вида f(x)=g(x). Зададим функции у=f(x), у=g(x); опишем их свойства и построим графики в одной системе координат. Абсциссы точек пересечения будут являться корнями уравнения. Проверка выполняется подстановкой в исходное уравнение.


Рассмотрим решения уравнений с одной переменной степени выше второй.

Степенью уравнения Р(х) = 0 называется степень многочлена Р(х), т.е. наибольшая из степеней его членов с коэффициентом, не равным нулю.

Так, например, уравнение (х 3 – 1) 2 + х 5 = х 6 – 2 имеет пятую степень, т.к. после операций раскрытия скобок и приведения подобных получим равносильное уравнение х 5 – 2х 3 + 3 = 0 пятой степени.

Вспомним правила, которые понадобятся для решения уравнений степени выше второй.

Утверждения о корнях многочлена и его делителях:

1. Многочлен n-й степени имеет число корней не превышающее число n, причем корни кратности m встречаются ровно m раз.

2. Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Если α – корень Р(х), то Р n (х) = (х – α) · Q n – 1 (x), где Q n – 1 (x) – многочлен степени (n – 1).

4.

5. Приведенный многочлен с целыми коэффициентами не может иметь дробных рациональных корней.

6. Для многочлена третьей степени

Р 3 (х) = ах 3 + bx 2 + cx + d возможно одно из двух: либо он разлагается в произведение трех двучленов

Р 3 (x) = а(х – α)(х – β)(х – γ), либо разлагается в произведение двучлена и квадратного трехчлена Р 3 (x) = а(х – α)(х 2 + βх + γ).

7. Любой многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов.

8. Многочлен f(x) делится на многочлен g(х) без остатка, если существует многочлен q(x), что f(x) = g(x) · q(x). Для деления многочленов применяется правило «деления уголком».

9. Для делимости многочлена P(x) на двучлен (x – c) необходимо и достаточно, чтобы число с было корнем P(x) (Следствие теоремы Безу).

10. Теорема Виета: Если х 1 , х 2 , …, х n – действительные корни многочлена

Р(х) = а 0 х n + а 1 х n - 1 + … + а n , то имеют место следующие равенства:

х 1 + х 2 + … + х n = -а 1 /а 0 ,

х 1 · х 2 + х 1 · х 3 + … + х n – 1 · х n = a 2 /а 0 ,

х 1 · х 2 · х 3 + … + х n – 2 · х n – 1 · х n = -a 3 / а 0 ,

х 1 · х 2 · х 3 · х n = (-1) n a n / а 0 .

Решение примеров

Пример 1.

Найти остаток от деления Р(х) = х 3 + 2/3 x 2 – 1/9 на (х – 1/3).

Решение.

По следствию из теоремы Безу: «Остаток от деления многочлена на двучлен (х – с) равен значению многочлена от с». Найдем Р(1/3) = 0. Следовательно, остаток равен 0 и число 1/3 – корень многочлена.

Ответ: R = 0.

Пример 2.

Разделить «уголком» 2х 3 + 3x 2 – 2х + 3 на (х + 2). Найти остаток и неполное частное.

Решение:

2х 3 + 3x 2 – 2х + 3| х + 2

2х 3 + 4 x 2 2x 2 – x

X 2 – 2 x

Ответ: R = 3; частное: 2х 2 – х.

Основные методы решения уравнений высших степеней

1. Введение новой переменной

Метод введения новой переменной уже знаком на примере биквадратных уравнений. Он заключается в том, что для решения уравнения f(x) = 0 вводят новую переменную (подстановку) t = x n или t = g(х) и выражают f(x) через t, получая новое уравнение r(t). Решая затем уравнение r(t), находят корни:

(t 1 , t 2 , …, t n). После этого получают совокупность n уравнений q(x) = t 1 , q(x) = t 2 , … , q(x) = t n , из которых находят корни исходного уравнения.

Пример 1.

(х 2 + х + 1) 2 – 3х 2 – 3x – 1 = 0.

Решение:

(х 2 + х + 1) 2 – 3(х 2 + x) – 1 = 0.

(х 2 + х + 1) 2 – 3(х 2 + x + 1) + 3 – 1 = 0.

Замена (х 2 + х + 1) = t.

t 2 – 3t + 2 = 0.

t 1 = 2, t 2 = 1. Обратная замена:

х 2 + х + 1 = 2 или х 2 + х + 1 = 1;

х 2 + х - 1 = 0 или х 2 + х = 0;

Ответ: Из первого уравнения: х 1, 2 = (-1 ± √5)/2, из второго: 0 и -1.

2. Разложение на множители методом группировки и формул сокращенного умножения

Основа данного метода также не нова и заключается в группировке слагаемых таким образом, чтобы каждая группа содержала общий множитель. Для этого иногда приходится применять некоторые искусственные приемы.

Пример 1.

х 4 – 3x 2 + 4х – 3 = 0.

Решение.

Представим - 3x 2 = -2x 2 – x 2 и сгруппируем:

(х 4 – 2x 2) – (x 2 – 4х + 3) = 0.

(х 4 – 2x 2 +1 – 1) – (x 2 – 4х + 3 + 1 – 1) = 0.

(х 2 – 1) 2 – 1 – (x – 2) 2 + 1 = 0.

(х 2 – 1) 2 – (x – 2) 2 = 0.

(х 2 – 1 – х + 2)(х 2 – 1 + х - 2) = 0.

(х 2 – х + 1)(х 2 + х – 3) = 0.

х 2 – х + 1 = 0 или х 2 + х – 3 = 0.

Ответ: В первом уравнении нет корней, из второго: х 1, 2 = (-1 ± √13)/2.

3. Разложение на множитель методом неопределенных коэффициентов

Суть метода состоит в том, что исходный многочлен раскладывается на множители с неизвестными коэффициентами. Используя свойство, что многочлены равны, если равны их коэффициенты при одинаковых степенях, находят неизвестные коэффициенты разложения.

Пример 1.

х 3 + 4x 2 + 5х + 2 = 0.

Решение.

Многочлен 3-й степени можно разложить в произведение линейного и квадратного множителей.

х 3 + 4x 2 + 5х + 2 = (х – а)(x 2 + bх + c),

х 3 + 4x 2 + 5х + 2 = х 3 +bx 2 + cх – ax 2 – abх – ac,

х 3 + 4x 2 + 5х + 2 = х 3 + (b – a)x 2 + (cх – ab)х – ac.

Решив систему:

{b – a = 4,
{c – ab = 5,
{-ac = 2,

{a = -1,
{b = 3,
{c = 2, т.е.

х 3 + 4x 2 + 5х + 2 = (х + 1)(x 2 + 3х + 2).

Корни уравнения (х + 1)(x 2 + 3х + 2) = 0 находятся легко.

Ответ: -1; -2.

4. Метод подбора корня по старшему и свободному коэффициенту

Метод опирается на применение теорем:

1) Всякий целый корень многочлена с целыми коэффициентами является делителем свободного члена.

2) Для того, чтобы несократимая дробь p/q (p – целое, q – натуральное) была корнем уравнения с целыми коэффициентами, необходимо, чтобы число p было целым делителем свободного члена а 0 , а q – натуральным делителем старшего коэффициента.

Пример 1.

6х 3 + 7x 2 – 9х + 2 = 0.

Решение:

6: q = 1, 2, 3, 6.

Следовательно, p/q = ±1, ±2, ±1/2, ±1/3, ±2/3, ±1/6.

Найдя один корень, например – 2, другие корни найдем, используя деление уголком, метод неопределенных коэффициентов или схему Горнера.

Ответ: -2; 1/2; 1/3.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.