Мощные источники света. Источники искусственного освещения. Нормирование искусственного освещения

В качестве источников искусственного освещения применяются лампы накаливания и газоразрядные лампы.

В лампах накаливания источником света является раскаленная вольфрамовая проволока. Эти лампы дают непрерывный спектр излучения с повышенной (по сравнению с естественным светом) интенсивностью в желто-красной области спектра. По конструкции лампы накаливания бывают вакуумные, газонаполненные, бесспиральные (галогенные).

Общим недостатком ламп накаливания является сравнительно небольшой срок службы (менее 2000 часов), сильное отличие спектрального состава излучения от естественного (нарушается правильная цветопередача) и малая световая отдача y (отношение создаваемого лампой светового потока к потребляемой электрической мощности) (y = 8-20 лм/Вт, при идеальных условиях 1 Вт соответствует 683 лм). В промышленности они находят применение для организации местного освещения.

Наибольшее применение в промышленности находят газоразрядные лампы низкого и высокого давления.

Газоразрядные лампы низкого давления, называемые люминесцентными , содержат стеклянную трубку, внутренняя поверхность которой покрыта люминофором, наполненную дозированным количеством паров металлов (натрия, ртути 30 - 80 мг), галогенов (йод, фтор) и смесью инертных газов под давлением около 400 Па. На противоположных концах внутри трубки размещаются электроды, между которыми, при включении лампы в сеть, возникает газовый разряд, сопровождающийся излучением преимущественно в ультрафиолетовой области спектра. Это излучение, в свою очередь, преобразуется люминофором в видимое световое излучение. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью.

В последние годы появились газоразрядные лампы низкого давления со встроенным высокочастотным преобразователем. Газовый разряд в таких лампах (называемый вихревым) возбуждается на высоких частотах (десятки кГц) за счет чего обеспечивается очень высокая светоотдача.

К газоразрядным лампам высокого давления (0,03-0,08 МПа) относят дуговые ртутные люминесцентные лампы (ДРЛ), по форме напоминающие вытянутые лампы накаливания. В спектре излучения этих ламп преобладают составляющие зелено-голубой области спектра.

Основными достоинствами газоразрядных ламп является их долговечность (свыше 10 000 часов: до 20 000 часов), экономичность, малая себестоимость изготовления, благоприятный спектр излучения (близкий к солнечному спектру), обеспечивающий высокое качество цветопередачи, низкая температура поверхности. Светоотдача y этих ламп колеблется в пределах от 30 до 105 лм/Вт (ДРЛ – до 65 лм/Вт, люминесцентные – до 90 лм/Вт, ксеноновые и натриевые – 110…200 лм/Вт), что в несколько раз превышает светоотдачу ламп накаливания.


К недостаткам этих ламп следует отнести наличие вредных веществ при их разгерметизации, радиопомехи, сложную и дорогостоящую пускорегулирующую арматуру, громоздкость и невозможность быстрого вторичного включения лампы при кратковременном отключении, а также длительность выхода отдельных типов ламп на номинальный режим (ДРЛ – до 3…5 мин). Существенным и наверное основным недостатком ГРЛ является пульсация светового потока.

1.4. НОРМИРОВАНИЕ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ

Наименьшая освещенность рабочих поверхностей в производственных помещениях устанавливается в зависимости от характеристики зрительной работы и регламентируется строительными нормами и правилами СНиП 23-05-95 «Естественное и искусственное освещение».

Характеристика зрительной работы определяется минимальным размером объекта различения, контрастом объекта с фоном и свойствами фона.

Объект различения - рассматриваемый предмет, отдельная его часть или дефект, который следует контролировать в процессе работы.

Фон - поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Фон считается:

светлым при коэффициенте отражения r светового потока поверхностью более 0,4; средне светлым при коэффициенте отражения от 0,2 до 0,4; темным при коэффициенте отражения менее 0,2.

Контраст объекта различения с фоном (К) определяется отношением абсолютной величины разности яркостей объекта В О и фона В Ф к наибольшей их этих двух яркостей. Контраст считается большим при значении К более 0,5; средним - при значениях К от 0,2 до 0,5; малым - при значениях К менее 0,2.

В соответствии со СНиП 23-05-95 все зрительные работы делятся на 8 разрядов в зависимости от размера объекта различения и условий зрительной работы. Допустимые значения наименьшей освещенности рабочих поверхностей в производственных помещениях в соответствии со СНиП 23.05-95 приведены в приложении 1. (В зарубежных нормах размер объекта различения часто указывают в угловых минутах).

Кроме цветности источников света и цветовой отделки интерьера, влияющих на субъективную оценку освещения, важным параметром, характеризующим качество освещения, является коэффициент пульсации Кп:

К п = [(Е max - E min)/2Eср]*100% , (4)

где: E max - максимальное значение пульсирующей освещенности на рабочей поверхности; Е min - минимальное значение пульсирующей освещенности; Е ср - среднее значение освещенности за период колебаний.

Для газоразрядных ламп К п » 25...65 %, для обычных ламп накаливания К п » 7 %, для галогенных ламп накаливания К п » 1 %.

Пульсации освещенности на рабочей поверхности не только утомляют зрение, но и могут вызывать неадекватное восприятие наблюдаемого объекта за счет появления стробоскопического эффекта. Стробоскопический эффект - кажущееся изменение или прекращение движения объекта, освещаемого светом, периодически изменяющимся с определенной частотой. Например, если вращающийся белый диск с черным сектором освещать пульсирующим световым потоком (вспышками), то сектор будет казаться: неподвижным при частоте f всп = f вращ, медленно вращающимся в обратную сторону при f всп > f вращ медленно вращающимся в ту же сторону при f всп < f вращ, где f всп и f вращ соответственно частоты вспышек и вращения диска. Пульсации освещенности на вращающихся объектах могут вызывать видимость их неподвижности, что в свою очередь, может явиться причиной травматизма.

Значение К п меняется от нескольких процентов (для ламп накаливания) до нескольких десятков процентов (для люминесцентных ламп). Малое значение К п для ламп накаливания объясняется большой тепловой инерцией нити накала, препятствующей заметному уменьшению светового потока F лн ламп в момент перехода мгновенного значения переменного напряжения сети через 0 (Рис.1). В то же время газоразрядные лампы обладают малой инерцией и меняют свой сетевой поток F лл почти пропорционально амплитуде сетевого напряжения (рис.1).

Для уменьшения коэффициента пульсации освещенности К п люминесцентные лампы включаются в разные фазы трехфазной электрической сети. Это хорошо поясняет нижняя кривая на рис.1а, где показан характер изменения во времени светового потока (и связанной с ним освещенности), создаваемого тремя люминесцентными лампами 3F лл включенными в три различные фазы сети. В последнем случае за счет сдвига фаз на 1/3 периода провалы в световом потоке каждой из ламп компенсируются световыми потоками двух других ламп, так что пульсации суммарного светового потока существенно уменьшаются. При этом среднее значение освещенности, создаваемой лампой, остается неизменным и не зависит от способа их включения.

В соответствии со СНиП 23-05-95 коэффициент пульсации освещенности К п нормируется в зависимости от разряда зрительных работ с сочетании с показателем ослепленности Р:

P = (s - 1)*10 3 , (5)

где s - коэффициент ослепленности, определяемый как:

s = (DBпор) s / DВпор, (6)

где DВпор - пороговая разность яркости объекта и фона при обнаружении объекта на фоне равномерной яркости, (DBпор) s - то же при наличии в поле зрения блёского (яркого) источника света.

На освещенность рабочих поверхностей в производственном помещении влияют отражение и поглощение света стенами, потолком и другими поверхностями, расстояние от светильника до рабочей поверхности, состояние излучающей поверхности светильника, наличие рассеивателя света и т.д. Вследствие этого полезно используется лишь часть светового потока, излучаемого источником света.

Нас всегда и везде окружает свет, так как это неотъемлемая часть жизни. Огонь, солнце, луна или настольная лампа - это все относится к данной категории. Сейчас нашей задачей будет рассмотреть естественные и искусственные источники света.

Раньше у людей не было хитроумных будильников и сотовых телефонов, которые помогают нам встать тогда, когда это необходимо. Эту функцию выполняло Солнце. Оно встало - люди начинают работу, село - ложатся отдыхать. Но, со временем, мы научились добывать искусственные источники света, мы поговорим о них в статье более подробно. Начать необходимо с самого главного понятия.

Свет

В общем смысле - это волна (электромагнитная) которая воспринимается органами зрения человека. Но все же есть рамки, которые человек видит (от 380 до 780 нм). До этого идет Хоть мы его не видим, но наша кожа его воспринимает (загар), после этих рамок идет инфракрасное излучение, некоторые живые организмы его видят, а человеком он воспринимается как тепло.

Теперь разберем такой вопрос: почему свет бывает разного цвета? Все зависит от длины волны, например, фиолетовый цвет образуется пучком волн длины 380 нм, зеленый - 500 нм, а красный - 625. Вообще, основных цветов 7, которые мы можем наблюдать во время такого явления, как радуга. Но многие, особенно искусственные источники света, излучают волны белого цвета. Даже если взять лампочку, которая висит у вас в комнате, с вероятностью 90 процентов, она освещает именно белым светом. Так вот, он получается за счет смешения всех основных цветов:

  • Красного.
  • Оранжевого.
  • Желтого.
  • Зеленого.
  • Голубого.
  • Синий.
  • Фиолетовый.

Их очень легко запомнить, многие используют такие строки: каждый охотник желает знать, где сидит фазан. А первые буквы каждого слова и обозначают цвет, кстати, в радуге они располагаются точно в таком порядке. После того как мы разобрались с самим понятием, предлагаем перейти к вопросу " и искусственные". Мы подробно разберем каждый вид.

Источники света

Не существует и в наше время ни одной отрасли хозяйства, которая в своем производстве не использовала бы искусственные источники света. Когда же человек впервые занялся производством Это было в далеком девятнадцатом веке, а причиной развития отрасли служило изобретение ламп дуговых и накаливания.

Источники света естественные и искусственные - это тела, которые способны излучать свет, а точнее, преобразовывать одну энергию в другую. Например, электрический ток в электромагнитную волну. Действующим по этому принципу искусственным источником света является электрическая лампочка, которая так распространена в повседневной жизни.

Мы говорили в прошлом разделе о том, что не весь свет воспринимается нашими органами зрения, но тем не менее источником света является и тот объект, который излучает волны, невидимые нашему глазу.

Классификация

Начнем с того, что все они делятся на два больших класса:

  • Искусственные источники света (светильники, горелки, свечи и так далее).
  • Естественные (свет Солнца, Луны, сияние звезд и прочее).

При этом каждый класс, в свою очередь, делится на группы и подгруппы. Начнем с первых, искусственные источники различают:

  • Тепловые.
  • Люминесцентные.
  • Светодиодные.

Более подробную классификацию обязательно рассмотрим далее. Во второй класс входят следующие:

  • Солнце.
  • Межзвездный газ и сами звезды.
  • Атмосферные разряды.
  • Биолюминесценция.

Естественные источники света

Все объекты, излучающие свет природного происхождения являются натуральными источниками. При этом испускание света может являться как основным, так и вторичным свойством. Если сравнивать природные и искусственные источники света, примеры которых мы уже рассмотрели, то их основное отличие заключается в том, что вторые излучают видимый нашему глазу свет благодаря человеку, а точнее, производству.

В первую очередь, что приходит на ум каждому, природным источником является Солнце, являющееся источником света и тепла для всей нашей планеты. Также естественными источниками являются звезды и кометы, электрические разряды (например, молния во время грозы), свечение живых организмов, этот процесс также называют биолюминесценцией (примером являются светлячки, некоторые водные организмы, обитающие на дне и так далее). Природные источники света играют очень важную роль как для человека, так и для других живых организмов.

Виды искусственных источников света

Зачем же нам они нужны? Представьте, как изменится наша жизнь без всем привычных ламп, ночников и тому подобных приборов. В чем заключается назначение искусственного света? В создании благоприятной обстановки и условий видимости для человека, тем самым поддержание здоровья и хорошего самочувствия, уменьшение утомляемости органов зрения.

Искусственные источники света можно разделить на две, довольно обширные, группы:

  • Общие.
  • Комбинированные.

К примеру, о первой группе, все производственные участки всегда освещаются однотипными лампами, которые расположены на одинаковом расстоянии друг от друга и мощность ламп одинакова. Если говорить о второй группе, то тогда к вышеперечисленным добавляются еще несколько светильников, которые сильнее выделяют какую-либо рабочую поверхность, например, стол или станок. Эти дополнительные источники называются местным освещением. При этом, если использовать только местное освещение, то это будет сильно влиять на утомляемость, а следствием будет снижение работоспособности, кроме этого, возможны аварии и несчастные случаи на производстве.

Рабочее, дежурное и аварийное освещение

Если рассматривать классификацию искусственных источников с точки зрения функционального назначения, то можно выделить следующие группы:

  • Рабочее;
  • Дежурное;
  • Аварийное.

Теперь немного подробнее о каждом виде. Рабочее освещение есть везде, где это необходимо для поддержания работоспособности людей или для освещения пути для идущего транспорта. Второй класс освещения начинает функционировать после рабочего времени. Последняя группа нужна для поддержания работы производства в случае отключения основного (рабочего) источника света, оно минимально, но способно временно заменить рабочее освещение.

Лампа накаливания

В наше время для освещения производственных участков используют лампы накаливания следующих видов:

  • Галогенные.
  • Газоразрядные.

И что же все-таки такое лампа накаливания? Первое, на что стоит обратить свое внимание, - то, что она является электрическим источником, а свет мы видим благодаря раскаленному телу, называемому телом накала. Ранее (в девятнадцатом веке) тело накала изготавливалось из такого вещества, как вольфрам, или из сплава на его основе. Сейчас же его изготавливают из более доступного углеродного волокна.

Типы, преимущества и недостатки

Сейчас промышленные предприятия выпускают большое число разнообразных ламп накаливания, среди которых наиболее популярны:

  • Вакуумные.
  • Лампы с криптоновым наполнением.
  • Биспиральные.
  • Наполненные смесью газов аргона и азота.

Теперь разберем последний вопрос, который касается а именно преимущества и недостатки. Плюсы: они недорогие в производстве, имеют небольшой размер, если их включить, то не нужно ждать пока разгорится, в производстве ламп накаливания не используется токсичные компоненты, они работают как на постоянном, так и на переменном токе, возможно использование регулятора яркости, хорошая бесперебойная работа даже при очень низких температурах. Несмотря на такое большое количество преимуществ, есть все-таки и минусы: они не сильно ярко светят, свет имеет желтоватый отлив, сильно нагреваются во время работы, что ведет иногда к пожарам при соприкосновении с текстильным материалом.

Газоразрядная лампа

Все они делятся на лампы высокого и низкого давления, большинство из них работает на парах ртути. Именно они вытеснили лампы накаливания, к которым мы так сильно привыкли, но имеют просто массы минусов, один из которых уже нами сказан, а именно возможность отравится ртутью, также сюда можем отнести шумы, мерцание, что ведет к более быстрой утомляемости, линейный спектр излучения и так далее.

Такие лампы могут нам служить до двадцати тысяч часов, конечно, если колба цела, а свет, излучаемый ей, имеет либо теплый, либо нейтрально белый цвет.

Использование искусственных источников света довольно распространено, например, газоразрядные лампы очень часто и по сей день используются в магазинах или офисах, в декоративном или художественном освещении, кстати сказать, профессиональное световое оборудование, также не обошлось без газоразрядной лампы.

Сейчас производство газоразрядных ламп очень распространено, что и влечет за собой большое количество видов, один из самых популярных мы рассмотрим прямо сейчас.

Люминесцентная лампа

Как уже говорилось это один из видов газоразрядной лампы. Стоит отметить то, что их часто используют для основного источника света, люминесцентные лампы намного мощнее ламп накаливания и при этом они потребляют одинаково энергии. Раз мы уже начали сравнение с лампами накаливания, то будет уместным и следующий факт - срок службы люминесцентных может превышать в двадцать раз срок ламп накаливания.

Что касается их разновидностей, то чаще используют напоминающую трубку, а внутри и находятся пары ртути. Это очень экономичный источник света, который распространен в общественных заведениях (школах, больницах, офисах и так далее).

Источники света естественные и искусственные, примеры которых мы рассмотрели, просто необходимы для человека и других живых существ нашей планеты. Естественные источники не дают нам потеряться во времени, а искусственные заботятся о нашем здоровье и благополучии на предприятиях, уменьшая процент аварий и несчастных случаев.

  • Искусственные источники света - технические устройства различной конструкции и с различными способами преобразования энергии, основным назначением которых является получение светового излучения (как видимого, так и с различной длиной волны, например, инфракрасного). В источниках света используется в основном электроэнергия, но также иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция и др.).

    В отличие от искусственных источников света, естественные источники света представляют собой природные материальные объекты: Солнце, Полярные сияния, светлячки, молнии и проч.

Связанные понятия

Взрывозащи́та - комплекс средств, обеспечивающих нормальную эксплуатацию оборудования в местах, в которых существует опасность взрыва газа или пыли; предотвращающих воздействие на людей опасных и вредных факторов взрыва, обеспечивающие сохранность материальных ценностей.Производственные процессы должны разрабатываться так, чтобы вероятность возникновения взрыва на любом взрывоопасном участке в течение года не превышала 10−6. В случае технической или экономической нецелесообразности ограничивается...

Газовое пожаротушение - это вид пожаротушения, при котором для тушения возгораний и пожаров применяются газовые огнетушащие вещества (ГОТВ). Автоматическая установка газового пожаротушения обычно состоит из баллонов или емкостей для хранения газового огнетушащего вещества, газа, который хранится в этих баллонах (емкостях) в сжатом или сжиженном состоянии, узлов управления, трубопроводов и насадок, обеспечивающих доставку и выпуск газа в защищаемое помещение, прибора приемно-контрольного и пожарных...

Пневматическая ванна - простейший химический прибор для сбора газов, таких как водород, кислород и азот. Изобретена в середине XVIII века, в настоящее время используется преимущественно в учебных целях.

Автомобиль на воде - гипотетический автомобиль, получающий энергию для движения из одной только воды. Водяные автомобили стали предметом множества международных патентов, статей в газетах и научно-популярных журналах, местных теленовостей и интернет-публикаций. Заявления о подобных устройствах признаны некорректными, а некоторые оказались попытками мошенничества. Утверждается, что эти машины могут вырабатывать топливо из возимого запаса воды без всяких других источников энергии или являются гибридами...

Горе́ние - сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе экзотермических реакций, сопровождающийся интенсивным выделением тепла. Химическая энергия, запасённая в компонентах исходной смеси, может выделяться также в виде теплового излучения и света. Светящаяся зона называется фронтом пламени или просто пламенем.

Горелка - устройство, обеспечивающее устойчивое сгорание топлива и возможность регулирования процесса горения.

Вакуумно-дуговое нанесение покрытий (катодно-дуговое осаждение) - это физический метод нанесения покрытий (тонких плёнок) в вакууме, путём конденсации на подложку (изделие, деталь) материала из плазменных потоков, генерируемых на катоде-мишени в катодном пятне вакуумной дуги сильноточного низковольтного разряда, развивающегося исключительно в парах материала электрода.

Солнечная печь представляет собой структуру, которая использует концентрированную солнечную энергию для получения высоких температур, как правило, для промышленности. Параболические зеркала или гелиостаты концентрируют свет (инсоляция) на координационный центр. Температура в фокальной точке может достигать 3500 ° C (6330 ° F), и это тепло может быть использовано для выработки электроэнергии, расплавки стали, выработки водородного топлива или наноматериалов.

Магнитогидродинамический генератор , МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Электри́чество - совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните - Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества.

Калильная сетка - осветительный прибор, в котором источником света служит сетка, содержащая оксиды редкоземельных металлов, нагреваемая горелкой. Используется явление кандолюминесценции - перенос энергии невидимой части спектра (инфракрасного излучения) в видимую.

Топливный элемент - электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне - в отличие от ограниченного количества энергии, запасённого в гальваническом элементе или аккумуляторе.

Алмазоподобное покрытие (DLC) - это технология плазменного импульсного распыления графита в вакуумной камере и осаждение ионов углерода с достаточно большой энергией на изделия.Существует в семи различных формах. Все семь содержат значительное количество sp3 гибридизированных атомов углерода. Наиболее распространенные формы имеют атомы углерода, расположенные в кубической решетке, в то время как менее распространенные (типа "лонсдейлит") имеют гексагональную решетку. При смешивании этих политипов...

Водный топливный элемент (ячейка) Мейера представляет собой техническую конструкцию «вечного двигателя», которым она являться не может, поскольку процесс должен иметь замкнутый цикл, которого мы не наблюдаем; вместо этого мы наблюдаем лишь новый вид топлива в виде чистой дистиллированной воды. Созданная американцем Стэнли Алленом Мейером (24 августа 1940 года - 20 марта 1998 года). Вокруг его ячейки возник спор. Он утверждал, что автомобиль, оснащенный его устройством, может использовать вместо бензина...

Пиролизный котёл - разновидность твердотопливного, как правило, водогрейного котла, в котором топливо (например, дрова) и выходящие из него летучие вещества сгорают раздельно. Обычно как синоним употребляется название газогенераторный котёл, изредка делают различие. Фактически, пиролиз (разложение и частичная газификация под действием нагревания) происходит при любом способе сжигания твёрдого органического топлива.

Гелиотермальная энергетика - один из способов практического использования возобновляемого источника энергии - солнечной энергии, применяемый для преобразования солнечной радиации в тепло воды или легкокипящего жидкого теплоносителя. Гелиотермальная энергетика применяется как для промышленного получения электроэнергии, так и для нагрева воды для бытового применения.

Ручной фонарь , фона́рик - небольшой носимый источник света для индивидуального использования. В современном мире под карманными фонарями понимают прежде всего электрические фонари, хотя существуют механические (преобразующие мускульную силу в электрическую), химические (источник света - химическая реакция) и с использованием открытого огня.

Батарея на расплавах солей (в том числе – батареи на жидких металлах) – тип батарей, использующих в качестве электролитов расплавы солей, и предлагающие одновременно высокую плотность энергии и удельную мощность. Традиционные «однократные» тепловые батареи могут долгое время храниться в твердом состоянии при комнатной температуре, прежде чем они будут активированы за счет нагревания. Перезаряжаемые батареи на жидких металлах используются для электромобилей, также их могут использовать для накопления...

Дома́шняя печь - металлическое или каменное устройство, в котором сжигают органическое топливо (дрова, торф или уголь) для бытовых целей - отопления и приготовления пищи. Разогретая печь быстро нагревает помещение, а затем длительное время обогревает его без дополнительного подкладывания топлива.

Каталитическая горелка или беспламенная горелка - разновидность горелки, в которой химические реакции окисления горючего протекают в присутствии катализатора. Такие горелки обычно используются в качестве нагревательных и/или осветительных приборов, а также в химической промышленности.

Шарлье́р (фр. charlière) - аэростат, наполненный водородом, гелием или другими газами легче воздуха. Назван по имени французского учёного и изобретателя Жака Александра Сезара Шарля. Аэростат объёмом 25 м³ совершил свой первый полёт 27 августа 1783 года при стечении 300 тыс. зрителей на Марсовом поле в Париже. Первый полёт «шарльёра» с экипажем (Шарль, Жак Александр Сезар и М. Н. Робер) состоялся 1 декабря 1783 года в Париже. Французский профессор физики Жак Шарль считал, что дымный воздух - это...

Солнечный коллектор - устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближним инфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.

Стекло ́ - вещество и материал, один из самых древних и, благодаря разнообразию своих свойств, - универсальный в практике человека. Структурно-аморфно, изотропно; все виды стёкол при формировании преобразуются в агрегатном состоянии - от чрезвычайной вязкости жидкого до так называемого стеклообразного - в процессе остывания со скоростью, достаточной для предотвращения кристаллизации расплавов, получаемых плавлением сырья (шихты). Температура варки стёкол, от +300 до +2500 °C, определяется компонентами...

Оксиликви́т - бризантное взрывчатое вещество, получаемое пропиткой жидким кислородом горючих пористых материалов (уголь, торф, мох, солома, древесина). Оксиликвит относят к взрывчатым веществам Шпренгеля. Взрывчатые свойства такой смеси были открыты в Германии в 1897 году профессором Карлом фон Линде, создателем установки по сжижению газов. К оксиликвитам могут быть отнесены и взрывчатые вещества на основе жидкого озона или его смеси с жидким кислородом, хотя практического применения такие смеси...

Солнечная энергетика - направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии. Гелиотермальная энергетика...

Элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде. - автоматический прибор для непрерывного или периодического контроля за состоянием воздуха и выдачи сигналов о появлении в нём токсических веществ в газо- и парообразном состоянии. Применяется как носимое или стационарное устройство. Подает сигнал-предупреждение (световой, звуковой, передачу сигнала во внешние цепи) о том, что значение контролируемого параметра превосходит заданный предел или находится вне заданного интервала значений. Отличается от анализатора газа (газоанализатора...

Ионизатор - устройство для ионизации газа или жидкости. Используются в системах вентиляции для очистки воздуха и подавления бактериальной активности.

Устройства различного конструктивного исполнения, использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию.

Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т.д.). Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев аварий.

По функциональному назначению искусственное освещение подразделяется на рабочее , дежурное , аварийное .

Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта.

Дежурное освещение включается во вне рабочее время.

Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Осветительные приборы составляют самую многочисленную группу электроприборов в каждом доме. Источники света являются важным элементом быта.

Источники искусственного освещения. Их достоинства и недостатки

Все современные лампы можно классифицировать по трем основным признакам: это тип цоколя, способ получения света и напряжение, от которого они работают. Начнем с самого главного - способа получения светового потока. Именно от него в полной мере зависит способность лампы потреблять определенное количество электрической энергии. Рассмотрим подробнее некоторые особенности этих ламп освещения.

Лампы накаливания

Лампы накаливания (рис. 1) относятся к классу тепловых источников света. Несмотря на внедрение более технологичных видов ламп, остаются одними из самых массовых и дешевых источников света, особенно в бытовом секторе.

Действие этих ламп основано на нагревании спирали проходящим через нее током до температуры 3000 градусов. Колбы ламп мощностью от 40 Вт и более наполнены инертными газами - аргоном или криптоном. Бытовые лампы бывают мощностью 25 - 150 Ватт. Лампы мощностью до 60 Ватт с уменьшенным цоколем называются миньонами. Проверить исправность лампы можно тестером, спираль должна иметь определенное сопротивление. У светильника с лампой накаливания возможно всего две неисправности: 1. Перегорелалампа 2. Отсутствует контакт в электропроводке, в результате чего на цоколь не подается напряжение.

Достоинства : Просты по конструкции, надежны, не имеют дополнительных устройств при включении, практически не зависят от температуры окружающей среды, мгновенно зажигаются.

Недостатки : Имеют не очень большой срок службы, около 1000 часов.

Лампы люминесцентные

Люминесцентные лампы (рис. 2) относятся к газоразрядным лампам низкого давления. Могут быть различной формы: прямые, трубчатые, фигурные и компактные (КЛЛ). Диаметр трубки не связан с мощностью лампы, которая может достигать до 200 Вт. Трубчатые лампы имеют двухштырьковые типы цоколей в зависимости от расстояния между штырьками: G-13 (расстояние - 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние - 5 мм) для ламп диаметром 16 мм.

Компактная люминисцентная лампа (КЛЛ) (рис. 3) - люминесцентная лампа, которая имеет изогнутую форму колбы, что позволяет разместить ее в светильнике небольших размеров. Такие лампы могут иметь встроенный электронный дроссель (ЭПРА), могут быть разной формы и разной длины. Применяются либо в специальных типах светильников либо для замены ламп накаливания в обычных типах светильников (лампы мощностью до 20Вт, которые вкручиваются в резьбовой патрон или через адаптер).

Люминесцентные лампы требуют работы специального устройства - пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование люминисцентных ламп, означают:

Л - люминесцентная, Б - белая, ТБ - тепло-белая, Д - дневная, Ц - с улучшенной цветопередачей. Цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 - лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт.

Светильник с люминесцентными лампами работает следующим образом (рис. 4) - трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды, ток, текущий через дроссель и стартер значительно увеличивается, нагревает биметаллическую пластину стартера, электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образуется кратковременное большое напряжение, его накопленной энергии хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе. Пары ртути с помощью люминофора создают свечение, воспринимаемое глазом человека. Дроссель почти не потребляет энергию, энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода, чтобы разгрузить сеть используется конденсатор С. Обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора понижает КПД лампы, без него КПД 50-60%, с ним - 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех.

Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме светильника или в выходе из строя одного из элементов светильника. Надежность контактов проверяется визуальным осмотром и проверкой тестером.

Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.

Типовые неисправности светильников с люминесцентными лампами

Неисправность

Способ устранения

Срабатывает защита при включении светильника

1. Пробой компенсирующего конденсатора (от радиопомех) на входе светильника.

2. Замыкание в цепи за автоматом.

1. Заменить конденсатор.

2. Проверить напряжение на контактах патронов и стартера.

3. Заменить лампу на исправную.

4. Проверить целостность спиралей лампы.

Лампа не зажигается.

На патроне светильника со стороны питающей сети нет напряжения, низкое напряжение сети.

Проверить индикатором или тестером наличие и значение напряжения питания.

Лампа не зажигается, на концах лампы нет свечения.

1. Плохой контакт между штырьками лампы и контактами патрона или между штырьками стартера и контактами держателя стартера.

2. Неисправность лампы, обрыв или перегорание спиралей.

3. Неисправность стартера - стартер не замыкает цепь накала электродов лампы.

4. Неисправность в электрической схеме светильника.

5. Неисправен дроссель.

1. Пошевелить в стороны лампу и стартер.

2. Установить заведомо исправную лампу.

3. Если отсутствует свечение в стартере, заменить стартер.

4. Проверить все соединения в электрической схеме.

5. Если обрыва проводов, нарушения контактных соединений и ошибок в электрической схеме не обнаружено, то, неисправен дроссель.

Лампа не зажигается, концы лампы светятся.

Неисправен стартер.

Заменить стартер.

Лампа мигает, но не зажигается, имеется свечение на одном конце.

1. Ошибки в электрической схеме.

2. Замыкание в электрической цепи или патроне, которое может закорачивать лампу.

3. Замыкание выводов электродов лампы.

1. Лампы вынуть и вставить, поменять местами концы. Если светится ранее несветящийся электрод, то лампа исправна.

2. Если свечение отсутствует на том же конце лампы, проверить, есть ли замыкание в патроне со стороны несветящегося электрода.

3. Если замыкание не обнаружено, проверить схему соединений.

4. Заменить лампу

Лампа не мигает и не зажигается, свечение имеется на обоих концах электродов.

1. Ошибка в электрической схеме.

2. Неисправность стартера (пробой конденсатора для подавления радиопомех или залипание контактов стартера).

Заменить стартер.

Лампа мигает и не зажигается

1. Неисправен стартер.

2. Ошибки в электрической схеме.

3. Низкое напряжение сети.

1. Проверить тестером напряжение сети.

2. Заменить стартер.

3. Заменить лампу.

При включении лампы на ее концах наблюдается оранжевое свечение, через некоторое время свечение исчезает и лампа не зажигается.

Неисправна лампа, в лампу попал воздух

Необходимо заменить лампу

Лампа попеременно зажигается и гаснет

Неисправность лампы

1. Необходимо заменить лампу.

2. Если мигание продолжается, то заменить стартер.

При включении лампы перегорают спирали ее электродов.

1. Неисправность дросселя (нарушена изоляция или межвитковое замыкание в обмотке).

2. В электрической схеме имеется замыкание на корпус.

1. Проверить электрическую схему.

2. Проверить изоляцию проводов.

3. Проверить в электрической схеме замыкание на корпус светильника

Лампа зажигается, но через несколько часов работы появляется почернение ее концов.

1. Замыкание на корпус светильника в электрической схеме.

2. Неисправность дросселя.

1. Проверить замыкание на корпус, проверить изоляцию проводки.

2. Тестером проверить величину пускового и рабочего тока, если эти величины превосходят нормальные значения, заменить дроссель.

Лампа зажигается, при ее горении начинается вращение разрядного шнура и проявляются перемещающиеся спиральные и змеевидные полосы

1. Неисправна лампа.

2. Сильные колебания напряжения сети.

3. Плохой контакт в соединениях.

4. Лампа охватывает магнитные силовые линии рассеяния дросселя.

1. Необходимо заменить лампу.

2. Проверить напряжение сети.

3. Проверить контактные соединения.

4. Заменить дроссель.

Достоинства : По сравнению с лампами накаливания экономичнее и долговечнее, обладают хорошей светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где лампа включена много часов.

Недостатки : При температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло.

Газоразрядные лампы ДРЛ

Лампы ДРЛ (дуговые ртутные с люминофором (Рис. 5,6), это разрядные лампы высокого давления. Благодаря дополнительным электродам и резисторам, размещенным в колбе, лампа не нуждается в зажигающем устройстве, включается в сеть с индуктивным ПРА и зажигается непосредственно от напряжения 220 Вольт, конденсатор необходим для уменьшения силы тока.

После включения лампы она зажигается, световой поток, создаваемый лампой, постепенно увеличивается, процесс разгорания длится 7 - 10 минут. При исчезновении напряжения лампа гаснет. Горячую лампу зажечь невозможно, необходимо ее полное остывание, после выключения ее можно повторно зажечь лишь через 10-15 минут. Бывают мощностью от 80 до 250 Ватт.

Ремонт светильников с лампами ДРЛ заключается в выявлении вышедшего из строя элемента и замене его на заведомо исправный.

Достоинства : значительно экономичнее ламп накаливания, нечувствительны к изменениям температуры, поэтому их удобно использовать при освещении на улице, срок службы до 15000 часов.

Недостатки : низкая цветопередача, пульсация светового потока, чувствительность к колебаниям напряжения в сети.

Галогенные лампы

Галогенные лампы накаливания (рис. 7) относятся к классу тепловых источников света, световое излучение которых является следствием нагрева спирали лампы проходящим через него током. Наполнена газовой смесью, в состав которой входят галогены (обычно йод или бром). Это придает свету яркость, насыщенность, и их можно применять в точечных источниках света.

Лучше применять лампы известных фирм - галогенные лампы излучают ультрафиолетовые лучи, что вредно для глаз. В лампах известных фирм есть специальное, не пропускающее ультрафиолет покрытие.

При возникновении неисправности измерить напряжение на цоколе светильника, если напряжение в норме - заменить лампу. Если напряжения на цоколе светильника нет - неисправность в трансформаторе или в контактной части электротехнической арматуры.

Достоинства : Срок службы 1500-2000 часов, обладают стабильностью светового потока в течении всего срока службы, меньшие размеры колбы по сравнению с лампами накаливания. При одинаковой с лампой накаливания мощности световая отдача в 1,5-2 раза больше.

Недостатки : Нежелательны изменения напряжения сети, при снижении напряжения уменьшается температура спирали и снижается срок службы лампы.

Энергосберегающие лампы

Энергосберегающие лампы (рис. 8) предназначены для эксплуатации в осветительных приборах жилых, офисных, коммерческих, административных и промышленных помещений, в декоративных осветительных установках.

Их можно использовать в любом светильнике в качестве заменителя ламп накаливания. Энергосберегающие лампы представляют собой разновидность газоразрядных ламп низкого давления, а именно компактных люминесцентных ламп (КЛЛ).

Мощность энергосберегающих ламп примерно в пять раз меньше, чем у ламп накаливания. Поэтому рекомендуется выбирать мощность энергосберегающих ламп исходя из соотношения 1:5 к лампам накаливания.

Основными параметрами таких ламп являются цветовая температура, размер цоколя и коэффициент цветопередачи. Цветовая температура определяет цвет свечения энергосберегающей лампы. Выражается по шкале Кельвина. Чем ниже температура, тем цвет свечения ближе к красному.

Энергосберегающие лампы имеют различные цвета свечения - белый теплый свет, холодный белый, дневной свет. Рекомендуется выбирать нужный цвет, исходя из интерьера квартиры или дома и особенностей зрения людей, которые там находятся. Холодный белый свет имеет обозначение 6400К. Такое освещение ярко-белое и лучше подходит для офисных помещений. Естественный белый свет имеет обозначение обозначением 4200К и близок к естественому освещению. Такой цвет может подойти для детской комнаты и гостинной. Белый теплый свет - немного желтоватый и имеет обозначение 2700К. Он наиболее близок к лампе накаливания, лучше подходит для отдыха, может использоваться на кухне и в спальне. Большинство людей для квартиры выбирает теплый цвет.

Если в энергосберегающей лампе появляются мерцания, то это говорит о неисправности устройства, лампа либо слабо вкручена, либо неисправна и подлежит замене.

Достоинства : Служат в 8 раз дольше, чем обычные лампы накаливания, на 80% меньше потребляют электроэнергии, дают в 5 раз больше света при равном потреблении энергии, могут работать в постоянном режиме в местах, где требуется освещение на протяжении всех суток, менее чувствительны к тряске и вибрациям, слабо нагреваются, не гудят и не мерцают.

Недостатки : Медленно разогреваются (около двух минут), нельзя использовать в открытых уличных светильниках (не работают при температуре ниже 15 градусов С), нельзя использовать с регуляторами освещенности (диммерами) и датчиками движения.

Светодиодные лампы.

Светодиодные лампы (рис. 9) являются еще одним источником света нового поколения.

В качестве источника света в таких лампах служат светодиоды. Светодиод излучает свет при прохождении через него электрического тока.

Светодиодные лампы основного освещения состоят из: рассеивателя, светодиода или набора светодиодов, корпуса, радиатора охлаждения, блока питания, цоколя. Большое значение имеет радиатор охлаждения, так как светодиоды и блок питания греются. Если радиатор маленький или некачественно сделан, то такие лампы быстрее выходят из строя (обычно выходит из строя блок питания). Блок питания преобразует переменное напряжение 220В в постоянный ток для питания светодиодов.

Выпускаются под патроны GU5.3, GU10, E14, E27. Предлагаются лампы мягкого теплого света (2600-3500К), нейтрального белого (3700-4200К) и холодного белого (5500-6500K). Есть светодиодные лампы с управляемой яркостью (с помощью диммера для ламп накаливания), но они стоят дороже.

Достоинства : Экономичность (затраты на электроэнергию по сравнению с лампами накаливания меньше в 10 раз), большой срок службы (20000 часов и выше), при производстве используютя безопасные компоненты (не содержат ртути), устойчивы к скачкам напряжения, не требуют разогрева (в отличие от энергосберегающих ламп).

Недостатки : Довольно высокая цена, светодиоды постепенно теряют яркость, не могут работать при температуре выше 100 градусов С (жарочные шкафы и т.д.).

Лампа накаливания источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры 2 5003 300 К, близкой к температуре плавления вольфрама (рис. 5). Световая отдача лампы накаливания 1035 лм/Вт; срок службы до 2 тыс. ч. Этот вид ламп все еще преобладает и производится в широком ассортименте, несмотря на имеющиеся в производстве более экономичные источники света. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы , являющиеся лампами-светильниками.

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению. Срок службы этих ламп увеличился до 35 тыс. ч. Двухцокольные линейные галогенные лампы (рис. 5, г ) используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Лампы совмещают в себе высокую светоотдачу, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Преимущества ламп накаливания:

– малая стоимость;

– отсутствие необходимости пускорегулирующей аппаратуры, при включении зажигаются практически мгновенно;

– возможность работы как на постоянном токе (любой полярности), так и на переменном;

– возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

– отсутствие токсичных компонентов и как следствие отсутствие необходимости инфраструктуры по сбору и утилизации;

– отсутствие мерцания и гудения при работе на переменном токе;

– непрерывный спектр излучения;

– устойчивость к электромагнитному импульсу;

– возможность использования регуляторов яркости;

– независимость работы от условий окружающей среды и температуры;

– световой поток к концу срока службы снижается незначительно (на 15 %).

Недостатки:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов );

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

Ограничения импорта, закупок и производства. В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

С 1 сентября 2009 г. в Евросоюзе вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 г. запрет коснется ламп мощностью ≥ 100 Вт, ламп с матовой колбой ≥ 75 Вт и др.; ожидается, что к 2012 г. будет запрещен импорт и производство ламп накаливания меньшей мощности.

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более.

Основные характеристики ламп накаливания (ЛН) :

– номинальное значение напряжения;

– номинальное значение мощности;

– номинальное значение светового потока (иногда силы света);

– срок службы;

L , диаметр D ).

Технические данные ламп накаливания приведены в табл. 1 прил. 2 .

В настоящее время все большее применение находят газоразрядные лампы , в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

По составу среды различают следующие газоразрядные лампы:

– с газом;

– с парами металлов и различных соединений.

По давлению :

– газоразрядные лампы низкого давления (от 0,1 до 25 кПа);

– газоразрядные лампы высокого давления (от 25 до 1000 кПа);

– газоразрядные лампы сверхвысокого давления (от 1000 кПа).

По типу разряда :

– дуговые;

– тлеющие;

– импульсные.

По источнику излучения :

– газоразрядные лампы, у которых источником света являются атомы, ионы или молекулы;

– фотолюминесцентные лампы, у которых источником света являются люминофоры, возбуждаемые разрядом;

– электродосветные лампы, у которых источником света являются электроды, раскаленные до высокой температуры.

По охлаждению :

– газоразрядные лампы с естественным охлаждением;

– газоразрядные лампы с принудительным охлаждением.

Наиболее распространены газоразрядные лампынизкого давления люминесцентные (рис. 6). Световая отдача – до 100 лм/Вт. Они имеют форму цилиндрической стеклянной трубки с двумя электродами. Трубка наполнена дозированным количеством ртути (3080 мг) и смесью инертных газов (часто аргон) при давлении около 400 Па (3 мм рт. ст.). По обоим концам трубки закреплены электроды. При включении электрический ток, протекающий между электродами, вызывает в парах ртути электрический разряд, сопровождающийся излучением (электролюминесценция). Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение, возникающее при газовом электрическом разряде, в видимый свет. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

Преимущества люминесцентных ламп:

– широкий диапазон цветности;

– благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;

– по сравнению с лампами накаливания обеспечивают такой же световой поток, но потребляют в 45 раз меньше энергии;

– имеют низкую температуру колбы;

– повышенный срок службы (до 615 тыс. ч.).

Недостатки люминесцентных ламп:

– относительная сложность схемы включения, шум дросселей;

– ограниченная единичная мощность и большие размеры при данной мощности;

– невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

– зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

– значительное снижение потока к концу срока службы;

– относительная дороговизна;

– вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

– срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости.

Пульсация светового потока возникает вследствие малой инерционности свечения люминофора. Это может привести к появлению стробоскопического эффекта , который проявляется в искажении зрительного восприятия движущихся или вращающихся объектов. При кратности или совпадении частоты пульсации светового потока и частоты вращения объекта вместо одного предмета видны изображения нескольких, искажаются скорость и направление движения. Стробоскопический эффект очень опасен, так как вращающиеся части механизмов, детали, инструмент могут показаться неподвижными и стать причиной травматизма.

Основные характеристики люминесцентных ламп :

– номинальная мощность;

– номинальное напряжение;

– номинальный ток лампы;

– световой поток;

– габаритные размеры (полная длина L , диаметр D );

– пульсации светового потока.

Технические данные основных типов ЛЛ приведены в табл. 2 Приложения 2 .

К газоразрядным лампам высокого и сверхвысокого давления относят лампы: ДРЛ дуговые ртутные люминесцентные; ДРЛР рефлекторные дуговые ртутные лампы с отражающим слоем; ДРИ ртутные лампы высокого давления с добавкой иодидов металла; ДКсТ дуговые ксеноновые трубчатые и др.

Принцип действия ламп ДРЛ (рис. 7): в горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда электролюминесценция. При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определенного значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 1015 минут после включения (в зависимости от температуры окружающей среды, чем холоднее, тем дольше будет разгораться лампа).

Электрический разряд в газе создает видимое белое, без красной и голубой составляющих спектра, и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 1015 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 2530 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается, после выключения должна остыть перед следующим включением.

Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ ртутные лампы высокого давления с добавкой иодидов металла , их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Трубчатые ксеноновые газоразрядные лампы высокого давления ДКсТ (дуговые ксеноновые трубчатые), имеющие высокую мощность (от 2 до 100 кВт), применяются в основном для наружного освещения в связи с опасностью ультрафиолетового облучения работающих в помещении. Разработаны специальные ксеноновые лампы ДКсТЛ в колбе из легированного кварца, предназначенные для применения в производственных помещениях, расположенных на Севере нашей страны, где они служат одновременно и для ультрафиолетового облучения работающих.

Натриевые газоразрядные лампы высокого давления ДНаТ (дуговые натриевые трубчатые) обладают наивысшей эффективностью и удовлетворительной цветопередачей. Применяются для освещения помещений с большой высотой, где требования к цветопередаче невысоки или в декоративных целях.

Преимущества ламп ДРИ:

– большой срок службы (до 12–20 тыс. ч.);

– большая световая отдача;

– компактность при большой единичной мощности;

– обеспечивают более равномерное освещение и рекомендованы для применения в светильниках общего освещения.

Недостатки :

– преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче;

– возможность работы только на переменном токе;

– длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин);

– пульсации светового потока больше, чем у люминесцентных ламп;

– значительное снижение светового потока к концу срока службы (до 70 %);

– наличие ртути (от 20 до 150 мг ртути).

Повреждения герметичности лампы ДРЛ вполне хватит, чтобы серьезно загрязнить, например, цех авиационного завода размерами сто на триста метров и с высотой потолков до 10 метров.

Технические данные ламп ДРЛ приведены в табл. 3 прил. 2 .

Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Светодиод или светоизлучающий диод (СД, СИД, LED – англ. Light-emitting diode ) полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Светодиодное освещение, благодаря эффективному расходу электроэнергии и простоте конструкции, нашло широкое применение в ручных осветительных приборах, в светотехнике для создания дизайнерского освещения специальных современных дизайн-проектов. Надежность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение и т. д.).

Преимущества светодиодного освещения:

– экономичность – световая отдача светодиодных систем уличного освещения достигает 140 лм/Вт;

– срок службы в 30 раз больше по сравнению с лампами накаливания;

– возможность получать различные спектральные характеристики без применения светофильтров;

– малые размеры;

– отсутствие ртутных паров (в сравнении с люминесцентными лампами);

– малое ультрафиолетовое и инфракрасное излучение;

– незначительное относительное тепловыделение (для маломощных устройств);

– высокая прочность.

Недостатки :

– высокая цена (отношение цена/люмен у сверхъярких светодиодов в 50–100 раз больше, чем у обычной лампы накаливания);

– низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения;

– необходимость низковольтного источника питания постоянного тока для обеспечения питания светодиодов от сети;

– высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников .

Электрический светильник это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания . Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Ф ф к световому потоку помещенной в него лампы Ф л, т. е.
.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.