Основные положения клеточной теории различные формы клеток. Клеточная теория. Как появилась клеточная теория

С момента обнаружения клеток, до того как было сформулировано современное положение клеточной теории, прошло почти 400 лет. Впервые клетку исследовал в 1665 г. естествоиспытатель из Англии Заметив на тонком срезе пробки ячеистые структуры, он дал им название клеток.

В свой примитивный микроскоп Гук еще не мог рассмотреть все особенности, но по мере совершенствования оптических приборов, появления методик окрашивания препаратов ученые все больше погружались в мир тонких цитологических структур.

Как появилась клеточная теория

Знаковое открытие, повлиявшее на дальнейший курс исследований и на современное положение клеточной теории, сделано в 30-х годах XIX века. Шотландец Р. Броун, изучая лист растения при помощи светового микроскопа, обнаружил в растительных клетках сходные округлые уплотнения, которые впоследствии назвал ядрами.

С этого момента появился важный признак для сопоставления между собой структурных единиц различных организмов, что стало основой выводов о единстве происхождения живого. Не зря даже современное положение клеточной теории содержит ссылку на данный вывод.

Вопрос о происхождении клеток был поставлен в 1838 году немецким ботаником Матиасом Шлейденом. Массово исследуя растительный материал, он отметил, что во всех живых растительных тканях присутствие ядер обязательно.

Его соотечественник зоолог Теодор Шванн сделал такие же выводы относительно тканей животных. Изучив работы Шлейдена и сопоставив множество растительных и животных клеток, он сделал заключение: несмотря на многообразие, все они имеют общий признак - оформленное ядро.

Клеточная теория Шванна и Шлейдена

Собрав воедино имеющиеся факты о клетке, Т. Шванн и М. Шлейден выдвинули главный постулат Он состоял в том, что все организмы (растения и животные) состоят из клеток, близких по строению.

В 1858 году было внесено еще одно дополнение в клеточную теорию. доказал, что организм растет за счет увеличения количества клеток путем деления исходных материнских. Нам это кажется очевидным, но для тех времен его открытие было весьма продвинутым и современным.

На тот момент современное положение клеточной теории Шванна в учебниках формулируется следующим образом:

  1. Все ткани живых организмов имеют клеточное строение.
  2. Клетки животных и растений образуются одним и тем же способом (делением клетки) и имеют сходное строение.
  3. Организм состоит из групп клеток, каждая из них способна к самостоятельной жизнедеятельности.

Став одним из важнейших открытий XIX века, клеточная теория заложила основу представления о единстве происхождения и общности эволюционного развития живых организмов.

Дальнейшее развитие цитологических знаний

Совершенствование исследовательских методов и оборудования позволило ученым значительно углубить знания о строении и жизнедеятельности клеток:

  • доказана связь структуры и функции как отдельных органелл, так и клеток в целом (специализация цитоструктур);
  • каждая клетка в отдельности демонстрирует все свойства, присущие живым организмам (растет, размножается, обменивается веществом и энергией с окружающей средой, подвижна в той или иной степени, адаптируется к изменениям и др.);
  • органеллы не могут по отдельности демонстрировать подобные свойства;
  • у животных, грибов, растений обнаруживаются одинаковые по строению и функциям органеллы;
  • все клетки в организме взаимосвязаны и работают слаженно, выполняя комплексные задачи.

Благодаря новым открытиям, положения теории Шванна и Шлейдена были уточнены и дополнены. Современный научный мир пользуется расширенными постулатами основополагающей теории в биологии.

В литературе можно встретить различное количество постулатов современной клеточной теории, наиболее полный вариант содержит пять пунктов:

  1. Клетка является наименьшей (элементарной) живой системой, основой строения, размножения, развития и жизнедеятельности организмов. Неклеточные структуры не могут называться живыми.
  2. Клетки появляются исключительно путем деления уже существующих.
  3. Химический состав и строение структурных единиц всех живых организмов сходны.
  4. Многоклеточный организм развивается и растет за счет деления одной/нескольких первоначальных клеток.
  5. Сходное клеточное строение организмов, населяющих Землю, свидетельствует о едином источнике их происхождения.

Первоначальные и современные положения клеточной теории во многом перекликаются. Углубленные и расширенные постулаты отражают современный уровень знаний по вопросу строения, жизни и взаимодействия клеток.

) дополнил её важнейшим положением (всякая клетка происходит от другой клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма . Клетки животных , растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом.

Положения клеточной теории Шлейдена-Шванна

  1. Все животные и растения состоят из клеток.
  2. Растут и развиваются растения и животные путём возникновения новых клеток.
  3. Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

Основные положения современной клеточной теории

  1. Клетка - элементарная единица живого, вне клетки жизни нет.
  2. Клетка - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.
  3. Клетки всех организмов гомологичны.
  4. Клетка происходит только путём деления материнской клетки, после удвоения её генетического материала.
  5. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.
  6. Клетки многоклеточных организмов тотипотентны .

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

  1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см. ниже).
  2. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - к митохондриям , хлоропластам , генам и хромосомам .
  3. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).
  4. Клетки многоклеточных тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

История

XVII век

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»).

В 1837 году Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог:

  • во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;
  • во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором он дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле . Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории - соответствие клеток растений и элементарных структур животных - была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:

  • В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры - клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма - это тоже клетки, вполне сравнимые с клетками хряща и хорды.
  • Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.
  • В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванна было высказанное им вслед за Шлейденом мнение о возможности возникновения клеток из бесструктурного неклеточного вещества.

Развитие клеточной теории во второй половине XIX века

С 1840-х годов XIX века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки - цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка - это комочек протоплазмы с содержащимся внутри ядром.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремаком . Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

«Omnis cellula ех cellula».
Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

  • Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.
  • Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.
  • Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

XX век

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки - с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

В 1930-х годах советский биолог О. Б. Лепешинская , основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов . Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

  • Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т. п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, «одичавшими» генами.
  • Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.
  • Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.
  • Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.
  • Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии , симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, то есть образуется оно в результате метаболизма клеток.
  • Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма - клетки или «элементарные организмы».

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Основные положения клеточной теории.

Все живые организмы состоят из клеток. Клетка - элементарная единица строения, функционирования и развития живых организмов. Существуют неклеточные формы жизни - вирусы, однако они проявляют свои свойства только в клетках живых организмов. Клеточные формы делятся на прокариот и эукариот.

Открытие клетки принадлежит английскому ученому Р. Гуку, который, просматривая под микроскопом тонкий срез пробки, увидел структуры, похожие на пчелиные соты, и назвал их клетками. Позже одноклеточные организмы исследовал голландский ученый Антони ван Левенгук. Клеточную теорию сформулировали немецкие ученые М. Шлейден и Т. Шванн в 1839 г. Современная клеточная теория существенно дополнена Р. Биржевым и др.

Основные положения современной клеточной теории:

клетка - основная единица строения, функционирования и развития всех живых организмов, наименьшая единица живого, способная к самовоспроизведению, саморегуляции и самообновлению;

клетки всех одноклеточных и многоклеточных организмов сходны (гомологиины) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки;

в сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.

Эти положения доказывают единство происхождения всех живых организмов, единство всего органического мира. Благодаря клеточной теории стало понятно, что клетка - это важнейшая составляющая часть всех живых организмов.

Клетка - самая мелкая единица организма, граница его делимости, наделенная жизнью и всеми основными признаками организма. Как элементарная живая система, она лежит в основе строения и развития всех живых организмов. На уровне клетки проявляются такие свойства жизни, как способность к обмену веществ и энергии, авторегуляция, размножение, рост и развитие, раздражимость.

Плазмалемма строение функции химический состав

Плазмолемма - оболочка животной клетки, ограничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой.

Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5-10 % из углеводов (в составе гликокаликса), и на 50-55 % из белков.

Функции плазмолеммы:

· разграничивающая (барьерная);

· рецепторная или антигенная;

· транспортная;

· образование межклеточных контактов.

Основу строения плазмолеммы составляет:

· двойной слой липидных молекул (билипидная мембрана), в которую местами включены молекулы белков;

· надмембранный слой - гликокаликс, структурно связанный с белками и липидами билипидной мембраны;

· в некоторых клетках имеется подмембранный слой.

Строение билипидной мембраны

Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части:

· гидрофильную головку;

· гидрофобные хвосты.

Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц.

На электроннограмме в плазмолемме четко определяются три слоя:

· наружный (электронноплотный);

· внутренний (электронноплотный);

· промежуточный (с низкой электронной плотностью).

Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя.

По локализации в мембране белки подразделяются на:

· интегральные (пронизывают всю толщу билипидного слоя);

· полуинтегральные, включающиеся только в монослой липидов (наружный или внутренний);

· прилежащие к мембране, но не встроенные в нее.

По выполняемой функции белки плазмолеммы подразделяются на:

· структурные белки;

· транспортные белки;

· рецепторные белки;

· ферментные.

Находящиеся на внешней поверхности плазмолеммы белки, в также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Именно эти макромолекулы и составляют надмембранный слой - гликокаликс. В неделящейся клетке имеется подмембранный слой, образованный микротрубочками и микрофиламентами.

Значительная часть поверхностных гликопротеидов и гликолипидов выполняют в норме рецепторные функции, воспринимают гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ, и тем самым оказывают влияние на функции клеток. Клеточные рецепторы, а возможно и другие мембранные белки, благодаря своей химической и пространственной специфичности, придают специфичность данному типу клеток данного организма и составляют трансплантационные антигены или антигены гистосовместимости.

Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.

Различают следующие способы транспорта веществ:

· пассивный транспорт - способ диффузии веществ через плазмолемму (ионов, некоторых низкомолекулярных веществ) без затраты энергии;

· активный транспорт веществ с помощью белков-переносчиков с затратой энергии (аминокислот, нуклеотидов и других);

· везикулярный транспорт через посредство везикул (пузырьков), который подразделяется на эндоцитоз - транспорт веществ в клетку, и экзоцитоз - транспорт веществ из клетки.

В свою очередь эндоцитоз подразделяется на:

· фагоцитоз - захват и перемещение в клетку крупных частиц (клеток или фрагментов, бактерий, макромолекул и так далее);

· пиноцитоз - перенос воды и небольших молекул.

Процесс фагоцитоза подразделяется на несколько фаз:

· адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;

· поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков - фагосомы и передвижения ее в гиалоплазму.

Межклеточные контакты виды и их структурно-функциональная характеристика

Структурно-функциональная характеристика органелл, участвую-

Структурно-функциональная характеристика органелл, участвующих во внутриклеточном расщеплении, защитных и обезвреживаю-

Щих реакциях

К ним относятся лизосомы и пероксисомы (в ЭПС агранулярного типа про-

исходит обезвреживание токсинов и лекарственных веществ).

Лизосомы. Различают: 1) первичные лизосомы; 2) вторичные лизосомы,

аутофагосомы; 3) остаточные тельца.

Первичные лизосомы имеют вид пузырьков диаметром 0,2-0,4 мкм, ог-

раниченных мембраной. Содержат гидролитические ферменты. Основной из

них – кислая фосфатаза. Ферменты находятся в неактивном состоянии, но

при активации способны расщеплять биополимеры до мономеров.

Вторичные лизосомы – это активные лизосомы, которые образуются пу-

тем слияния содержимого первичных лизосом с фагосомой, пиноцитозными

вакуолями, измененными органеллами (в последнем случае вторичная лизосо-

ма именуется как аутофаголизосома). При этом происходит активация фер-

ментов и лизис веществ, поступивших в клетку или измененные органеллы.

Остаточные тельца возникают в случае неполного расщепления ком-

понентов, подлежащих гидролизу. Содержимое их выводится из клетки пу-

тем экзоцитоза. Недостаток лизосомальных ферментов лежит в основе болез-

ней накопления (лизосомных болезней).

Функции лизосом

1. Внутриклеточное пищеварение.

2. Участие в фагоцитозе.

3. Участие в митозе – разрушении ядерной оболочки.

4. Участие во внутриклеточной регенерации.

5. Участие в аутолизе – саморазрушении клетки после ее гибели.

Пероксисомы представляют собой пузырьки диаметром 0,3-0,5 мкм,

ограниченные мембраной.

Матрикс содержит гранулы, фибриллы, трубочки. В них присутствуют ок-

сидазы аминокислот и каталаза, разрушающая перекиси.

В результате окисления аминокислот, углеводов и других соединений в клет-

ках образуется сильный окислитель – перекись водорода, который использует-

ся для окисления других, в том числе вредных для организма веществ (деток-

сицирующая функция). Избыток перекиси водорода, токсичного для клетки,

разрушается ферментом каталазой с выделением кислорода и воды.

Функции пироксом

1. Являются органеллами утилизации кислорода. В них образуется

сильный окислитель перекись водорода.

2. Расщепление при помощи фермента каталазы избытка перекисей и,

таким образом, защита клеток от гибели.

3. Расщепление при помощи синтезируемых в самих пироксисомах пе-

рекисей токсичных продуктов, имеющих экзогенное происхождение (деток-

сикация). Например, пероксисомы печеночных клеток, клеток почек.

4. Участие в метаболизме клетки: ферменты пероксисом катализируют

расщепление жирных кислот, участвуют в обмене аминокислот и других веществ.

Щих в энергопроизводстве

К ним относятся митохондрии. Они представляют собой полуавтономные орга-

неллы и аппарат синтеза АТФ за счет энергии, получаемой при окислении органи-

ческих соединений. Эти органеллы способны перемещаться по цитоплазме, сли-

ваться одна с другой, делиться. Форма и размеры различны, число их зависит от

активности клетки. Чаще всего это тельца длиной1-10 мкм, толщиной 0,5 мкм.

Митохондрии состоят из наружной и внутренней мембран, разделенных

межмембранным пространством, и содержат митохондриальный матрикс, в

который обращены складки внутренней мембраны (кристы).

Наружная митохондриальная мембрана напоминает плазмолемму, содержит

много молекул специализированных транспортных белков (например, по-

рин), формирующих каналы, обеспечивающие высокую проницаемость. На

ней находятся рецепторы, распознающие белки, которые переносятся через

обе митохондриальные мембраны в зонах их слипания.

Внутренняя митохондриальная мембрана образует выпячивания – кристы,

благодаря которым площадь внутренней мембраны значительно увеличивает-

ся. На кристах находятся элементарные частицы, которые представляют собой

комплексы ферментов фосфорилирования (синтеза АТФ) за счет энергии, ос-

вобождающейся в митохондриях в результате процессов окисления.

Митохондриальный матрикс – гомогенное мелкозернистое образование,

рибосомы, митохондриальные гранулы, связывающие двухвалетные катио-

ны, в частности Са ++, Mg++. Катионы необходимы для поддержания актив-

ности митохондриальных ферментов.

Функции митохондрий

1. Обеспечение клетки энергией в виде АТФ.

2. Участие в биосинтезе стероидных гормонов (некоторые звенья био-

синтеза этих гормонов протекают в митохондриях). В таких клетках – мито-

хондрии со сложными крупными трубчатыми кристами.

3. Депонирование кальция.

4. Участие в синтезе нуклеиновых кислот.

Продолжительность существования митохондрий – около 10 суток. Их раз-

рушение происходит путем аутофагии. Образование новых митохондрий

происходит путем перешнуровки предшествующих.

Ляющих цитоскелет

Цитоскелет сформирован тремя основными компонентами: микро-

трубочками, микрофиламентами, промежуточными филаментами.

Микротрубочки – полые цилиндры диаметром 25 нм. Стенка их со-

стоит из фибрилл, сформированных молекулами белка тубулина. Микротру-

бочки могут расти. В цитоплазме существует равновесие между микротру-

бочками и растворенным тубулином. Трубочки с одного конца распадаются,

с другого – вновь образуются. Не распадаются микротрубочки центриолей,

базальных телец, ресничек, жгутиков. При митозе микротрубочки цитоскеле-

та распадаются, а из освободившегося тубулина образуется веретено деления.

После митоза происходит обратный процесс. Если клетку обработать колхи-

цином, разрушающим микротрубочки, клетка теряет способность делиться,

изменяется ее форма.

Функции микротрубочек

1. Выполняют роль цитоскелета.

2. Участвуют в транспорте веществ и органелл в клетках.

3. Участвуют в образовании веретена деления и обеспечивают расхож-

дение хромосом в митозе.

4. Входят в состав центриолей, ресничек, жгутиков.

Микрофиламенты. Существует три типа филаментов: микрофиламен-

ты толщиной 5-6 нм (актиновые), толщиной 10 нм (миозиновые) и толщиной

около 7 нм (промежуточные). Актиновые и миозиновые филаменты образу-

ют миофибриллы в миоцитах и мышечных волокнах, в других клетках обес-

печивают сокращение и перемещение клетки, процессы эндоцитоза и экзоци-

тоза, формирование псевдоподий и микроворсинок. С этими филаментами

связаны сокращения тромбов. Много микрофиламентов образуется в под-

мембранном слое клеток. С ними связаны интегральные белки мембран.

Промежуточные филаменты состоят из белковых нитей, обладающих

высокой прочностью и стабильностью. Для их белкового состава характерна

тканевая специфичность. В эпителии они имеют кератиновую природу, в

клетках мезенхимного происхождения они состоят из виментина и т.д. Про-

межуточные филаменты выполняют в клетке только опорную функцию.

Центриоли представлены двумя полыми цилиндриками длиной 500 нм и

диаметром 150 нм. Располагаются они под прямым углом друг к другу.

Стенка цилиндрика состоит из 9 триплетов микротрубочек (А, В, С), свя-

занных поперечными белковыми мостиками «ручками». С каждым три-

плетом посредством ножек связаны сателлиты. Сателлиты – белковые тельца,

от которых отходят микротрубочки. Центриоли являются центрами форми-

рования микротрубочек веретена деления, микротрубочек аппаратов движе-

ния ресничек и жгутиков. Формула центриоли – (9хЗ)+0.

Функции центриолей: 1) являются центром организации микротрубочек ве-

ретена деления; 2) образуют реснички и жгутики; 3) обеспечивают внутри-

клеточное передвижение органелл.

Взаимодействие ядра и тд

Ядро – важнейший и обязательный компонент клетки, выполняющий сле-

дующие функции:

1) хранение генетической информации;

2) реализацию генетической информации путем контроля в клетке синтети-

ческих процессов, а также процессов воспроизводства и гибели (апоптоза);

3) воспроизведение и передачу генетической информации.

Ядро состоит из: 1) хроматина; 2) ядрышка; 3) кариоплазмы; 4) ядерной

оболочки.

Хроматин. В его состав входит ДНК в комплексе с белком. Различают

два вида хроматина: 1) эухроматин, соответствующий сегментам хромосом,

которые деспирализованы и открыты для транскрипции; 2) гетерохроматин,

соответствующий конденсированным, плотно скрученным сегментам хромо-

сом, что делает их недоступными для транскрипции.

Чем больше эухроматина в интерфазном ядре, тем интенсивнее протекают в

нем процессы синтеза.

Белки хроматина: 1) гистоны, обеспечивающие компактную упаковку ДНК;

2) негистоновые белки, регулирующие активность генов.

Ядрышко – это самая плотная структура ядра диаметром 1-5 мкм. Яд-

рышко создается ядрышковым организатором, который располагается в об-

ласти вторичных перетяжек хромосом. Ядрышко – это место образования

рибосомных РНК и субъединиц рибосом.

Кариоплазма (ядерный сок) содержит различные белки (гистоны, фер-

менты, структурные белки), углеводы, нуклеотиды.

Функции: 1) создает микросреду для всех структур ядра; 2) обеспечивает

перемещение рибосом, м-РНК, т-РНК к ядерным порам.

Ядерная оболочка (кариолемма) состоит из внешней и внутренней мем-

бран, разделенных перинуклеарным пространством шириной 15-40 нм. Внеш-

няя мембрана переходит в мембраны ЭПС-гранулярного типа и содержит ри-

босомы. Внутренняя мембрана связана с хромосомным материалом ядра. На

месте слияния 2-х мембран образуются ядерные поры. Поры содержат два па-

раллельных кольца (по одному с каждой поверхности кариолеммы).

Кольца образованы 8 белковыми гранулами. От этих гранул к центру

сходятся фибриллы, формирующие диафрагму, в середине которой лежит центральная гранула, и возможно, что это представляет собой субъединицы

рибосом, транспортируемые через поры.

Функции кариолеммы

1) разграничительная;

2) защитная;

3) регуляция транспорта веществ, в том числе и рибосом из ядра в цито-

плазму и наоборот.

Ядерно-цитоплазматические отношения – это отношение объема ядра

клетки к объему цитоплазмы. Это соотношение показывает, в каком состоянии

находится клетка. Если это отношение равно или больше 1, это значит, что в клет-

ке большое ядро и мало цитоплазмы. Такое отношение могут иметь стволовые

клетки, малые лимфоциты, стареющие клетки. Такие клетки функционально неак-

тивны, однако обладают способностью делиться, например, стволовые клетки. И,

наоборот, клетки, у которых ядерно-цитоплазматические отношения меньше 1,

имеют большой объем цитоплазмы и, следовательно, большое количество орга-

нелл. Они высоко дифференцированы и способны активно функционировать.

Митоз

Митоз – это непрямое деление; кариокинез – универсальный способ де-

ления, благодаря которому ядерный материал распределяется поровну между

дочерними клетками.

Фазы митоза: профаза, метафаза, анафаза, телофаза.

Профаза. В ядре происходит конденсация хромосом, и они становятся

видимыми. Хромосомные нити, переплетаясь, образуют фигуру плотного

клубка (ранняя профаза) или рыхлого клубка (поздняя профаза). Ядрышки

уменьшаются в размере и исчезают. Ядерная оболочка распадается на фраг-

менты. Удвоившиеся в S-периоде центриоли расходятся к полюсам, и между

ними начинает формироваться веретено деления.

Метафаза. Хромосомы свободно лежат в цитоплазме. Они имеют фор-

му шпилек, концы их обращены к периферии клетки, а центромеры всех

хромосом располагаются в одной экваториальной плоскости так, что создает-

ся «материнская звезда». Между хроматидами определяется разделяющая их

щель. Завершается формирование веретена деления.

Анафаза. Происходит расщепление центромеров и расхождение хро-

матид к полюсам клетки при участии веретена деления.

Телофаза. Начинается с остановки разошедшихся хромосом. При этом

происходит восстановление нового ядра и ядрышек, а также деспирализация

хромосом дочерних клеток, которые включаются в синтетические процессы.

Происходит цитотомия.

Амитоз – прямое деление, которое часто встречается при патологии и у

стареющих клеток. Вначале происходит деление ядрышка путем перешну-

ровки, затем происходит перетяжка в ядре. Вслед за делением ядра осущест-

вляется цитотомия.

Различают: 1) генеративный амитоз, после которого дочерние клетки спо-

собны делиться митозом; 2) реактивный амитоз, вызванный неадекватным

воздействием на организм; 3) дегенеративный амитоз – деление, связанное с

процессами дегенерации клеток.

Эндорепродукция – это явление, при котором из митотического цикла

выпадает митоз. Она приводит к увеличению числа молекул ДНК, но новых

клеток при этом не образуется. Эндорепродукция может протекать в форме

эндомитоза. Эндомитоз – редупликация хромосом. Их расхождение происхо-

дит без разрушения ядерной оболочки, образования митотического аппарата

и цитотомии. В результате увеличивается количество хромосом и возникают

полиплоидные ядра (клетки печени).

Общие сведения

Клеточная теория -- основополагающая для общей биологии теория, сформулированная в середине XIX века , предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения . Маттиас Шлейден , Теодор Шванн и Рудольф Вирхов сформулировали клеточную теорию , основываясь на множестве исследований о клетке (1838 ).

Основные положения клеточной теории

Современная клеточная теория включает следующие основные положения:

1. Клетка -- элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.

2. Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ .

3. Размножение клеток происходит путем их деления. Новые клетки всегда возникают из предшествующих клеток.

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список ее положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см.ниже).

2. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из ее более мелких компонентов -- кмитохондриям , хлоропластам , генам и хромосомам .

3. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

4. Клетки многоклеточных тотипотенты, т. е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к диференцировке.

Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток -- прокариоты (предъядерные) иэукариоты (ядерные). Прокариотические клетки -- более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки -- более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки -- протопласт -- отделено от окружающей среды плазматической мембраной , или плазмалеммой . Внутри клетка заполненацитоплазмой , в которой расположены различные органоиды и клеточные включения , а также генетический материал в виде молекулы ДНК . Каждый изорганоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Прокариоты (от лат. pro -- вперёд, вместо и греч. karyon -- ядро ) -- организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий ). Единственная крупная кольцевая (у некоторых видов -- линейная) двухцепочечная молекула ДНК , в которой содержится основная часть генетического материала клетки (так называемый нуклеоид ) не образует комплекса с белками-гистонами (так называемого хроматина ). К прокариотам относятся бактерии , в том числецианобактерии (сине-зелёные водоросли), археи , а также постоянные внутриклеточные симбионты эукариотических клеток -- митохондрии и пластиды .

Эукариотическая клетка

Эукариоты (эвкариоты) (от греч. eu -- хорошо, полностью и karyon -- ядро) -- организмы, обладающие, в отличие от прокариот, оформленным клеточнымядром , отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят ) комплекс с белками-гистонами , называемый хроматином . В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть , Аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты -прокариоты -- митохондрии , а у водорослей и растений -- также и пластиды .

Апоптоз

Апоптоз служит для элиминации (устранения) ненужных клеточ­ных популяций в процессе эмбриогенеза и при различных физиологичес­ких процессах. Главной морфологической особенностью апоптоза явля­ется конденсация и фрагментация хроматина.

Апоптоз – контролируемый процесс самоуничтожения клетки. При некрозе на ранних стадиях наблюдается конденсация хроматина, затем происходит набухание клетки с разрушением цитоплазматических структур и последую­щим лизисом ядра. Морфологическими проявлениямиапоптоза являются конденсация ядерного гетерохроматина и сморщивание клетки с сохранением целостности органелл. Клетка распадается на апоптозные тельца, представляющие собой мембранные структуры с заключенными внутри органеллами и частицами ядра, затем апоптозные тельца фагоцитируются и разрушаются при помощи лизосом окружающими клетками.

При апоптозе повреждение ДНК, недостаток факторов роста, воздействие на рецепторы, нарушение метаболизма ведут к акти­вации внутренней самоуничтожающей программы. Синхронно с уплотнением хроматина под влиянием эндонуклеаз начинается деградация ДНК. Эндонуклеазы расщепляют двойную цепочку ДНК между нуклеосомами. В результате активации цитоплазматических протеаз происходит разрушение цитоскелета, межклеточных контак­тов, связывание белков и распад клетки на апоптозные тельца. Быстрое распознавание и фагоцитоз апоптозных телец указыва­ют на наличие на их поверхности специфических рецепторов, облегчающих адгезию и фагоцитоз. Важнейшим свойством апоптоза считается сохранение внутриклеточного содержимого в мембранных структурах, что позволяет осуществить элимина­цию клетки без развития воспалительного ответа. Характерные признаки апоптоза связаны с характером воздействия и типом клеток.

Одной из важных особенностей апоптоза является его зависимость от активации генов и синтеза белка. Индукция апоптоз - специфических генов обеспечивается за счет специаль­ных стимулов, таких как белки теплового шока и протоонкогены.

Апоптоз ответственен за:

· удаление клеток в процессе эмбриогенеза;

· гормон-зависимую инволюцию клеток у взрослых, на­пример, отторжение клеток эндометрия в процессе менструального цикла, атрезию фолликулов;

· уничтожение клеток в пролиферирующих клеточных по­пуляциях, таких как эпителий крипт тонкой кишки;

· смерть кле­ток в опухолях;

· смерть аутореактивных клонов Т-лимфоцитов;

· смерть клеток, вызванную цитотоксическими Т-клетками, на­пример, при отторжении трансплантата;

· гибель клеток при неко­торых вирусных заболеваниях, например, при вирусном гепатите.

Однослойный эпителий

· Однослойный плоский эпителий (эндотелий и мезотелий). Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. Эндотелиальные клетки плоские, бедны органеллами и образуют эндотелиальный пласт. Хорошо развита обменная функция. Они создают условия для кровотока. При нарушении эпителия образуются тромбы. Эндотелий развивается из мезенхимы. Вторая разновидность - мезотелий - развивается из мезодермы. Выстилает все серозные оболочки. Состоит из плоских полигональной формы клеток, связанных между собой неровными краями. Клетки имеют одно, реже два уплощенных ядра. На апикальной поверхности имеются короткие микроворсинки. Они обладают всасывательной, выделительной и разграничительной функциями. Мезотелий обеспечивает свободное скольжение внутренних органов относительно друг друга. Мезотелий выделяет на свою поверхность слизистый секрет. Мезотелий предотвращает образование соединительнотканных спаек. Достаточно хорошо регенерируют за счет митоза.

· Однослойный кубический эпителий развивается из энтодермы и мезодермы. На апикальной поверхности имеются микроворсинки, увеличивающие рабочую поверхность, а в базальной части цитолемма образует глубокие складки, между которыми в цитоплазме располагаются митохондрии, поэтому базальная часть клеток выглядит исчерченной. Выстилает мелкие выводные протоки поджелудочной железы, желчные протоки и почечные канальцы.

· Однослойный цилиндрический эпителий встречается в органах среднего отдела пищеварительного канала, пищеварительных железах, почках, половых железах и половых путях. При этом строение и функция определяется его локализацией. Развивается из энтодермы и мезодермы. Слизистую желудка выстилает однослойный железистый эпителий. Он вырабатывает и выделяет слизистый секрет, который распространяется по поверхности эпителия и защищает слизистую оболочку от повреждения. Цитолемма базальной части также имеет небольшие складки. Эпителий обладает высокой регенерацией.

· Почечные канальцы и слизистая оболочка кишечника выстлана каёмчатым эпителием . В каёмчатом эпителии кишечника преобладают каёмчатые клетки -энтероциты. На их верхушке располагаются многочисленные микроворсинки. В этой зоне происходит пристеночное пищеварение и интенсивное всасывание продуктов питания. Слизистые бокаловидные клетки вырабатывают на поверхность эпителия слизь, а между клетками располагаются мелкие эндокринные клетки. Они выделяют гормоны, которые обеспечивают местную регуляцию.

· Однослойный многорядный реснитчатый эпителий . Он выстилает воздухоносные пути и имеет эктодермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные - это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия. Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки, это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток. Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

Многослойный эпителий

· Многослойный плоский неороговевающий эпителий . Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоёв. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них - стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.

· Многослойный плоский ороговевающий эпителий - эпидермис, он выстилает кожные покровы. В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоёв:

· 1 - базальный слой - содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (пигментоциты).

· 2 - шиповатый слой - клетки полигональной формы, в них содержатся тонофибриллы.

· 3 - зернистый слой - клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения.

· 4 - блестящий слой - узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру, и кератогиалин превращается в элеидин.

· 5 - роговой слой - содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается.

В тонкой коже, которая не испытывает нагрузки, отсутствует зернистый и блестящий слои.

· Многослойный кубический и цилиндрический эпителии встречаются крайне редко - в области конъюнктивы глаза и области стыка прямой кишки между однослойным и многослойным эпителиями.

· Переходный эпителий (уроэпителий) выстилает мочевыводящие пути и аллантоис. Содержит базальный слой клеток, часть клеток постепенно отделяется от базальной мембраны и образует промежуточный слой грушевидных клеток. На поверхности располагается слой покровных клеток - крупные клетки, иногда двухрядные, покрыты слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов. Эпителий способен выделять секрет, защищающий его клетки от воздействия мочи.

Железистый эпителий

Железистый эпителий представлен особыми эпителиальными клетками - гландулоцитами, обеспечивающими сложную функцию секреции, включающую четыре фазы: поглощение исходных продуктов, синтез и накопление секрета, выделение секрета - экструзию и, наконец, восстановление структуры железистых клеток. Эти фазы про­ходят в гландулоцитах циклично, в виде так называемого секреторного цикла.

Экструзия или выделение секрета в железистых клетках различного вида происходит неодинаково. Различают три типа секреции -мерокриновый(эккриновый), апокриновый и голокриновый. При мерокриновом типе секреции клетки полностью сохраняют свою структуру и объем. При апокриновом типе секреции происходит частичное разрушение железистых клеток, т. е. вместе с секретом отделяется либо апикальная часть железистой клетки (макроапокриновая секреция), или верхушки микроворсинок (микроапокриновая секреция). Голокриновый тип секреции приводит к полному разрушению железистых клеток (таблица2).

Железистый эпителий, продуцирующий слизь, можетбыть представлен одиночными железистыми клетками или железистыми полями. Примером последних является железистый эпителий слизистой оболочки желудка. Все клетки его являются железистыми. Продуцируя слизь, они защищают стенку органа от переваривающего действия желудочного сока.

Имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Клеточная теория неоднократно дополнялась и редактировалась.

Положения клеточной теории Шлейдена-Шванна

Создатели теории так сформулировали её основные положения:

  • Все животные и растения состоят из клеток.
  • Растут и развиваются растения и животные путём возникновения новых клеток.
  • Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

Основные положения современной клеточной теории

  • Клетка - это элементарная, функциональная единица строения всего живого. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом (кроме вирусов , которые не имеют клеточного строения).
  • Клетка - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.
  • Клетки всех организмов гомологичны .
  • Клетка происходит только путём деления материнской клетки.

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

  • Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу.
  • В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - к митохондриям , хлоропластам , генам и хромосомам .
  • Клетки многоклеточных тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

История

XVII век

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Г. Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Ф. Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»).

В 1837 году Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог:

  • во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;
  • во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором он дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле . Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории - соответствие клеток растений и элементарных структур животных - была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:

  • В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры - клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма - это тоже клетки, вполне сравнимые с клетками хряща и хорды.
  • Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.
  • В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванна было высказанное им вслед за Шлейденом мнение о возможности возникновения клеток из бесструктурного неклеточного вещества.

Развитие клеточной теории во второй половине XIX века

С 1840-х годов XIX века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки - цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка - это комочек протоплазмы с содержащимся внутри ядром.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию образования клеток из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремаком . Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

«Omnis cellula ех cellula».
Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

  • Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.
  • Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.
  • Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

XX век

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки - с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

В 1930-х годах советский биолог О. Б. Лепешинская , основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов . Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

  • Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т. п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, «одичавшими» генами.
  • Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.
  • Клеточная теория рассматривала организм как сумму клеток, а проявления жизни организма растворяла в сумме проявлений жизни составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.
  • Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.
  • Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии , симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, то есть образуется оно в результате метаболизма клеток.
  • Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма - клетки или «элементарные организмы».

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

См. также

  • Сравнение строения клеток бактерий, растений, животных и грибов

Напишите отзыв о статье "Клеточная теория"

Литература

  • Кацнельсон З.С. Клеточная теория в её историческом развитии. - Ленинград: МЕДГИЗ, 1963. - С. 344. - ISBN 5-0260781.
  • Шимкевич В. М. // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Ссылки

  • .

Отрывок, характеризующий Клеточная теория

– Ась? – проговорил Платон (он уже было заснул). – Читал что? Богу молился. А ты рази не молишься?
– Нет, и я молюсь, – сказал Пьер. – Но что ты говорил: Фрола и Лавра?
– А как же, – быстро отвечал Платон, – лошадиный праздник. И скота жалеть надо, – сказал Каратаев. – Вишь, шельма, свернулась. Угрелась, сукина дочь, – сказал он, ощупав собаку у своих ног, и, повернувшись опять, тотчас же заснул.
Наружи слышались где то вдалеке плач и крики, и сквозь щели балагана виднелся огонь; но в балагане было тихо и темно. Пьер долго не спал и с открытыми глазами лежал в темноте на своем месте, прислушиваясь к мерному храпенью Платона, лежавшего подле него, и чувствовал, что прежде разрушенный мир теперь с новой красотой, на каких то новых и незыблемых основах, воздвигался в его душе.

В балагане, в который поступил Пьер и в котором он пробыл четыре недели, было двадцать три человека пленных солдат, три офицера и два чиновника.
Все они потом как в тумане представлялись Пьеру, но Платон Каратаев остался навсегда в душе Пьера самым сильным и дорогим воспоминанием и олицетворением всего русского, доброго и круглого. Когда на другой день, на рассвете, Пьер увидал своего соседа, первое впечатление чего то круглого подтвердилось вполне: вся фигура Платона в его подпоясанной веревкою французской шинели, в фуражке и лаптях, была круглая, голова была совершенно круглая, спина, грудь, плечи, даже руки, которые он носил, как бы всегда собираясь обнять что то, были круглые; приятная улыбка и большие карие нежные глаза были круглые.
Платону Каратаеву должно было быть за пятьдесят лет, судя по его рассказам о походах, в которых он участвовал давнишним солдатом. Он сам не знал и никак не мог определить, сколько ему было лет; но зубы его, ярко белые и крепкие, которые все выкатывались своими двумя полукругами, когда он смеялся (что он часто делал), были все хороши и целы; ни одного седого волоса не было в его бороде и волосах, и все тело его имело вид гибкости и в особенности твердости и сносливости.
Лицо его, несмотря на мелкие круглые морщинки, имело выражение невинности и юности; голос у него был приятный и певучий. Но главная особенность его речи состояла в непосредственности и спорости. Он, видимо, никогда не думал о том, что он сказал и что он скажет; и от этого в быстроте и верности его интонаций была особенная неотразимая убедительность.
Физические силы его и поворотливость были таковы первое время плена, что, казалось, он не понимал, что такое усталость и болезнь. Каждый день утром а вечером он, ложась, говорил: «Положи, господи, камушком, подними калачиком»; поутру, вставая, всегда одинаково пожимая плечами, говорил: «Лег – свернулся, встал – встряхнулся». И действительно, стоило ему лечь, чтобы тотчас же заснуть камнем, и стоило встряхнуться, чтобы тотчас же, без секунды промедления, взяться за какое нибудь дело, как дети, вставши, берутся за игрушки. Он все умел делать, не очень хорошо, но и не дурно. Он пек, парил, шил, строгал, тачал сапоги. Он всегда был занят и только по ночам позволял себе разговоры, которые он любил, и песни. Он пел песни, не так, как поют песенники, знающие, что их слушают, но пел, как поют птицы, очевидно, потому, что звуки эти ему было так же необходимо издавать, как необходимо бывает потянуться или расходиться; и звуки эти всегда бывали тонкие, нежные, почти женские, заунывные, и лицо его при этом бывало очень серьезно.
Попав в плен и обросши бородою, он, видимо, отбросил от себя все напущенное на него, чуждое, солдатское и невольно возвратился к прежнему, крестьянскому, народному складу.
– Солдат в отпуску – рубаха из порток, – говаривал он. Он неохотно говорил про свое солдатское время, хотя не жаловался, и часто повторял, что он всю службу ни разу бит не был. Когда он рассказывал, то преимущественно рассказывал из своих старых и, видимо, дорогих ему воспоминаний «христианского», как он выговаривал, крестьянского быта. Поговорки, которые наполняли его речь, не были те, большей частью неприличные и бойкие поговорки, которые говорят солдаты, но это были те народные изречения, которые кажутся столь незначительными, взятые отдельно, и которые получают вдруг значение глубокой мудрости, когда они сказаны кстати.
Часто он говорил совершенно противоположное тому, что он говорил прежде, но и то и другое было справедливо. Он любил говорить и говорил хорошо, украшая свою речь ласкательными и пословицами, которые, Пьеру казалось, он сам выдумывал; но главная прелесть его рассказов состояла в том, что в его речи события самые простые, иногда те самые, которые, не замечая их, видел Пьер, получали характер торжественного благообразия. Он любил слушать сказки, которые рассказывал по вечерам (всё одни и те же) один солдат, но больше всего он любил слушать рассказы о настоящей жизни. Он радостно улыбался, слушая такие рассказы, вставляя слова и делая вопросы, клонившиеся к тому, чтобы уяснить себе благообразие того, что ему рассказывали. Привязанностей, дружбы, любви, как понимал их Пьер, Каратаев не имел никаких; но он любил и любовно жил со всем, с чем его сводила жизнь, и в особенности с человеком – не с известным каким нибудь человеком, а с теми людьми, которые были перед его глазами. Он любил свою шавку, любил товарищей, французов, любил Пьера, который был его соседом; но Пьер чувствовал, что Каратаев, несмотря на всю свою ласковую нежность к нему (которою он невольно отдавал должное духовной жизни Пьера), ни на минуту не огорчился бы разлукой с ним. И Пьер то же чувство начинал испытывать к Каратаеву.
Платон Каратаев был для всех остальных пленных самым обыкновенным солдатом; его звали соколик или Платоша, добродушно трунили над ним, посылали его за посылками. Но для Пьера, каким он представился в первую ночь, непостижимым, круглым и вечным олицетворением духа простоты и правды, таким он и остался навсегда.
Платон Каратаев ничего не знал наизусть, кроме своей молитвы. Когда он говорил свои речи, он, начиная их, казалось, не знал, чем он их кончит.
Когда Пьер, иногда пораженный смыслом его речи, просил повторить сказанное, Платон не мог вспомнить того, что он сказал минуту тому назад, – так же, как он никак не мог словами сказать Пьеру свою любимую песню. Там было: «родимая, березанька и тошненько мне», но на словах не выходило никакого смысла. Он не понимал и не мог понять значения слов, отдельно взятых из речи. Каждое слово его и каждое действие было проявлением неизвестной ему деятельности, которая была его жизнь. Но жизнь его, как он сам смотрел на нее, не имела смысла как отдельная жизнь. Она имела смысл только как частица целого, которое он постоянно чувствовал. Его слова и действия выливались из него так же равномерно, необходимо и непосредственно, как запах отделяется от цветка. Он не мог понять ни цены, ни значения отдельно взятого действия или слова.

Получив от Николая известие о том, что брат ее находится с Ростовыми, в Ярославле, княжна Марья, несмотря на отговариванья тетки, тотчас же собралась ехать, и не только одна, но с племянником. Трудно ли, нетрудно, возможно или невозможно это было, она не спрашивала и не хотела знать: ее обязанность была не только самой быть подле, может быть, умирающего брата, но и сделать все возможное для того, чтобы привезти ему сына, и она поднялась ехать. Если князь Андрей сам не уведомлял ее, то княжна Марья объясняла ото или тем, что он был слишком слаб, чтобы писать, или тем, что он считал для нее и для своего сына этот длинный переезд слишком трудным и опасным.
В несколько дней княжна Марья собралась в дорогу. Экипажи ее состояли из огромной княжеской кареты, в которой она приехала в Воронеж, брички и повозки. С ней ехали m lle Bourienne, Николушка с гувернером, старая няня, три девушки, Тихон, молодой лакей и гайдук, которого тетка отпустила с нею.
Ехать обыкновенным путем на Москву нельзя было и думать, и потому окольный путь, который должна была сделать княжна Марья: на Липецк, Рязань, Владимир, Шую, был очень длинен, по неимению везде почтовых лошадей, очень труден и около Рязани, где, как говорили, показывались французы, даже опасен.
Во время этого трудного путешествия m lle Bourienne, Десаль и прислуга княжны Марьи были удивлены ее твердостью духа и деятельностью. Она позже всех ложилась, раньше всех вставала, и никакие затруднения не могли остановить ее. Благодаря ее деятельности и энергии, возбуждавшим ее спутников, к концу второй недели они подъезжали к Ярославлю.
В последнее время своего пребывания в Воронеже княжна Марья испытала лучшее счастье в своей жизни. Любовь ее к Ростову уже не мучила, не волновала ее. Любовь эта наполняла всю ее душу, сделалась нераздельною частью ее самой, и она не боролась более против нее. В последнее время княжна Марья убедилась, – хотя она никогда ясно словами определенно не говорила себе этого, – убедилась, что она была любима и любила. В этом она убедилась в последнее свое свидание с Николаем, когда он приехал ей объявить о том, что ее брат был с Ростовыми. Николай ни одним словом не намекнул на то, что теперь (в случае выздоровления князя Андрея) прежние отношения между ним и Наташей могли возобновиться, но княжна Марья видела по его лицу, что он знал и думал это. И, несмотря на то, его отношения к ней – осторожные, нежные и любовные – не только не изменились, но он, казалось, радовался тому, что теперь родство между ним и княжной Марьей позволяло ему свободнее выражать ей свою дружбу любовь, как иногда думала княжна Марья. Княжна Марья знала, что она любила в первый и последний раз в жизни, и чувствовала, что она любима, и была счастлива, спокойна в этом отношении.
Но это счастье одной стороны душевной не только не мешало ей во всей силе чувствовать горе о брате, но, напротив, это душевное спокойствие в одном отношении давало ей большую возможность отдаваться вполне своему чувству к брату. Чувство это было так сильно в первую минуту выезда из Воронежа, что провожавшие ее были уверены, глядя на ее измученное, отчаянное лицо, что она непременно заболеет дорогой; но именно трудности и заботы путешествия, за которые с такою деятельностью взялась княжна Марья, спасли ее на время от ее горя и придали ей силы.
Как и всегда это бывает во время путешествия, княжна Марья думала только об одном путешествии, забывая о том, что было его целью. Но, подъезжая к Ярославлю, когда открылось опять то, что могло предстоять ей, и уже не через много дней, а нынче вечером, волнение княжны Марьи дошло до крайних пределов.
Когда посланный вперед гайдук, чтобы узнать в Ярославле, где стоят Ростовы и в каком положении находится князь Андрей, встретил у заставы большую въезжавшую карету, он ужаснулся, увидав страшно бледное лицо княжны, которое высунулось ему из окна.
– Все узнал, ваше сиятельство: ростовские стоят на площади, в доме купца Бронникова. Недалече, над самой над Волгой, – сказал гайдук.
Княжна Марья испуганно вопросительно смотрела на его лицо, не понимая того, что он говорил ей, не понимая, почему он не отвечал на главный вопрос: что брат? M lle Bourienne сделала этот вопрос за княжну Марью.
– Что князь? – спросила она.
– Их сиятельство с ними в том же доме стоят.
«Стало быть, он жив», – подумала княжна и тихо спросила: что он?
– Люди сказывали, все в том же положении.
Что значило «все в том же положении», княжна не стала спрашивать и мельком только, незаметно взглянув на семилетнего Николушку, сидевшего перед нею и радовавшегося на город, опустила голову и не поднимала ее до тех пор, пока тяжелая карета, гремя, трясясь и колыхаясь, не остановилась где то. Загремели откидываемые подножки.
Отворились дверцы. Слева была вода – река большая, справа было крыльцо; на крыльце были люди, прислуга и какая то румяная, с большой черной косой, девушка, которая неприятно притворно улыбалась, как показалось княжне Марье (это была Соня). Княжна взбежала по лестнице, притворно улыбавшаяся девушка сказала: – Сюда, сюда! – и княжна очутилась в передней перед старой женщиной с восточным типом лица, которая с растроганным выражением быстро шла ей навстречу. Это была графиня. Она обняла княжну Марью и стала целовать ее.
– Mon enfant! – проговорила она, – je vous aime et vous connais depuis longtemps. [Дитя мое! я вас люблю и знаю давно.]
Несмотря на все свое волнение, княжна Марья поняла, что это была графиня и что надо было ей сказать что нибудь. Она, сама не зная как, проговорила какие то учтивые французские слова, в том же тоне, в котором были те, которые ей говорили, и спросила: что он?
– Доктор говорит, что нет опасности, – сказала графиня, но в то время, как она говорила это, она со вздохом подняла глаза кверху, и в этом жесте было выражение, противоречащее ее словам.
– Где он? Можно его видеть, можно? – спросила княжна.
– Сейчас, княжна, сейчас, мой дружок. Это его сын? – сказала она, обращаясь к Николушке, который входил с Десалем. – Мы все поместимся, дом большой. О, какой прелестный мальчик!
Графиня ввела княжну в гостиную. Соня разговаривала с m lle Bourienne. Графиня ласкала мальчика. Старый граф вошел в комнату, приветствуя княжну. Старый граф чрезвычайно переменился с тех пор, как его последний раз видела княжна. Тогда он был бойкий, веселый, самоуверенный старичок, теперь он казался жалким, затерянным человеком. Он, говоря с княжной, беспрестанно оглядывался, как бы спрашивая у всех, то ли он делает, что надобно. После разорения Москвы и его имения, выбитый из привычной колеи, он, видимо, потерял сознание своего значения и чувствовал, что ему уже нет места в жизни.
Несмотря на то волнение, в котором она находилась, несмотря на одно желание поскорее увидать брата и на досаду за то, что в эту минуту, когда ей одного хочется – увидать его, – ее занимают и притворно хвалят ее племянника, княжна замечала все, что делалось вокруг нее, и чувствовала необходимость на время подчиниться этому новому порядку, в который она вступала. Она знала, что все это необходимо, и ей было это трудно, но она не досадовала на них.
– Это моя племянница, – сказал граф, представляя Соню, – вы не знаете ее, княжна?
Княжна повернулась к ней и, стараясь затушить поднявшееся в ее душе враждебное чувство к этой девушке, поцеловала ее. Но ей становилось тяжело оттого, что настроение всех окружающих было так далеко от того, что было в ее душе.
– Где он? – спросила она еще раз, обращаясь ко всем.
– Он внизу, Наташа с ним, – отвечала Соня, краснея. – Пошли узнать. Вы, я думаю, устали, княжна?
У княжны выступили на глаза слезы досады. Она отвернулась и хотела опять спросить у графини, где пройти к нему, как в дверях послышались легкие, стремительные, как будто веселые шаги. Княжна оглянулась и увидела почти вбегающую Наташу, ту Наташу, которая в то давнишнее свидание в Москве так не понравилась ей.
Но не успела княжна взглянуть на лицо этой Наташи, как она поняла, что это был ее искренний товарищ по горю, и потому ее друг. Она бросилась ей навстречу и, обняв ее, заплакала на ее плече.
Как только Наташа, сидевшая у изголовья князя Андрея, узнала о приезде княжны Марьи, она тихо вышла из его комнаты теми быстрыми, как показалось княжне Марье, как будто веселыми шагами и побежала к ней.
На взволнованном лице ее, когда она вбежала в комнату, было только одно выражение – выражение любви, беспредельной любви к нему, к ней, ко всему тому, что было близко любимому человеку, выраженье жалости, страданья за других и страстного желанья отдать себя всю для того, чтобы помочь им. Видно было, что в эту минуту ни одной мысли о себе, о своих отношениях к нему не было в душе Наташи.
Чуткая княжна Марья с первого взгляда на лицо Наташи поняла все это и с горестным наслаждением плакала на ее плече.
– Пойдемте, пойдемте к нему, Мари, – проговорила Наташа, отводя ее в другую комнату.
Княжна Марья подняла лицо, отерла глаза и обратилась к Наташе. Она чувствовала, что от нее она все поймет и узнает.
– Что… – начала она вопрос, но вдруг остановилась. Она почувствовала, что словами нельзя ни спросить, ни ответить. Лицо и глаза Наташи должны были сказать все яснее и глубже.
Наташа смотрела на нее, но, казалось, была в страхе и сомнении – сказать или не сказать все то, что она знала; она как будто почувствовала, что перед этими лучистыми глазами, проникавшими в самую глубь ее сердца, нельзя не сказать всю, всю истину, какою она ее видела. Губа Наташи вдруг дрогнула, уродливые морщины образовались вокруг ее рта, и она, зарыдав, закрыла лицо руками.
Княжна Марья поняла все.
Но она все таки надеялась и спросила словами, в которые она не верила:
– Но как его рана? Вообще в каком он положении?
– Вы, вы… увидите, – только могла сказать Наташа.
Они посидели несколько времени внизу подле его комнаты, с тем чтобы перестать плакать и войти к нему с спокойными лицами.
– Как шла вся болезнь? Давно ли ему стало хуже? Когда это случилось? – спрашивала княжна Марья.
Наташа рассказывала, что первое время была опасность от горячечного состояния и от страданий, но в Троице это прошло, и доктор боялся одного – антонова огня. Но и эта опасность миновалась. Когда приехали в Ярославль, рана стала гноиться (Наташа знала все, что касалось нагноения и т. п.), и доктор говорил, что нагноение может пойти правильно. Сделалась лихорадка. Доктор говорил, что лихорадка эта не так опасна.
– Но два дня тому назад, – начала Наташа, – вдруг это сделалось… – Она удержала рыданья. – Я не знаю отчего, но вы увидите, какой он стал.
– Ослабел? похудел?.. – спрашивала княжна.
– Нет, не то, но хуже. Вы увидите. Ах, Мари, Мари, он слишком хорош, он не может, не может жить… потому что…

Когда Наташа привычным движением отворила его дверь, пропуская вперед себя княжну, княжна Марья чувствовала уже в горле своем готовые рыданья. Сколько она ни готовилась, ни старалась успокоиться, она знала, что не в силах будет без слез увидать его.
Княжна Марья понимала то, что разумела Наташа словами: сним случилось это два дня тому назад. Она понимала, что это означало то, что он вдруг смягчился, и что смягчение, умиление эти были признаками смерти. Она, подходя к двери, уже видела в воображении своем то лицо Андрюши, которое она знала с детства, нежное, кроткое, умиленное, которое так редко бывало у него и потому так сильно всегда на нее действовало. Она знала, что он скажет ей тихие, нежные слова, как те, которые сказал ей отец перед смертью, и что она не вынесет этого и разрыдается над ним. Но, рано ли, поздно ли, это должно было быть, и она вошла в комнату. Рыдания все ближе и ближе подступали ей к горлу, в то время как она своими близорукими глазами яснее и яснее различала его форму и отыскивала его черты, и вот она увидала его лицо и встретилась с ним взглядом.
Он лежал на диване, обложенный подушками, в меховом беличьем халате. Он был худ и бледен. Одна худая, прозрачно белая рука его держала платок, другою он, тихими движениями пальцев, трогал тонкие отросшие усы. Глаза его смотрели на входивших.
Увидав его лицо и встретившись с ним взглядом, княжна Марья вдруг умерила быстроту своего шага и почувствовала, что слезы вдруг пересохли и рыдания остановились. Уловив выражение его лица и взгляда, она вдруг оробела и почувствовала себя виноватой.
«Да в чем же я виновата?» – спросила она себя. «В том, что живешь и думаешь о живом, а я!..» – отвечал его холодный, строгий взгляд.
В глубоком, не из себя, но в себя смотревшем взгляде была почти враждебность, когда он медленно оглянул сестру и Наташу.
Он поцеловался с сестрой рука в руку, по их привычке.
– Здравствуй, Мари, как это ты добралась? – сказал он голосом таким же ровным и чуждым, каким был его взгляд. Ежели бы он завизжал отчаянным криком, то этот крик менее бы ужаснул княжну Марью, чем звук этого голоса.

, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Клеточная теория неоднократно дополнялась и редактировалась.

Энциклопедичный YouTube

    1 / 5

    ✪ Методы цитологии. Клеточная теория. Видеоурок по биологии 10 класс

    ✪ Клеточная теория | Биология 10 класс #4 | Инфоурок

    ✪ Тема 3, ч1. ЦИТОЛОГИЯ. КЛЕТОЧНАЯ ТЕОРИЯ. СТРОЕНИЕ МЕМБРАНЫ.

    ✪ Клеточная теория | Строение клетки | Биология (часть 2)

    ✪ 7. Клеточная теория (история + методы) (9 или 10-11 класс) - биология, подготовка к ЕГЭ и ОГЭ 2018

    Субтитры

Положения клеточной теории Шлейдена-Шванна

Создатели теории так сформулировали её основные положения:

  • Клетка - элементарная структурная единица строения всех живых существ.
  • Клетки растений и животных самостоятельны, гомологичны друг другу по происхождению и структуре.

Основные положения современной клеточной теории

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Г. Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Ф. Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»).

В 1837 году Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог:

  • во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;
  • во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором он дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле . Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории - соответствие клеток растений и элементарных структур животных - была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:

  • В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры - клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма - это тоже клетки, вполне сравнимые с клетками хряща и хорды.
  • Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.
  • В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванна было высказанное им вслед за Шлейденом мнение о возможности возникновения клеток из бесструктурного неклеточного вещества.

Развитие клеточной теории во второй половине XIX века

С 1840-х годов XIX века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки - цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка - это комочек протоплазмы с содержащимся внутри ядром.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию образования клеток из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремаком . Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

«Omnis cellula ех cellula».
Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

  • Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.
  • Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.
  • Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

XX век

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки - с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

В 1930-х годах советский биолог О. Б. Лепешинская , основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов . Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

  • Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т. п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, «одичавшими» генами.
  • Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.
  • Клеточная теория рассматривала организм как сумму клеток, а проявления жизни организма растворяла в сумме проявлений жизни составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.
  • Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.
  • Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии , симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, то есть образуется оно в результате метаболизма клеток.
  • Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма - клетки или «элементарные организмы».

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.