Презентация химия и военное дело. Химия. Статистика в военном производстве

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 24 имени И.И.Вехова ст. Александрийской»

Проектная работа

Химические вещества в военном деле

Выполнили:

учащиеся 9а класса:

Гарнов Александр,

Бутенко Владислав,

Корниенко Алина,

Падалко Алла

Учитель химии:

Абаева Е.П.

Содержание.

    Введение.

    Отравляющие вещества.

    Неорганические вещества на службе военных.

    Вклад советских учёных-химиков в победу ВОВ.

    Заключение.

    Литература.

Введение.

Мы живём в мире различных веществ. В принципе человеку для жизни нужно не так уж много: кислород (воздух), вода, пища, Элементарная одежда, жильё. Однако человек, осваивая окружающий мир, получая всё новые знания о нём, постоянно изменяет свою жизнь.

Во второй половине XIX века химическая наука достигла такого уровня развития, который сделал возможным создание новых, никогда ранее в природе не сосуществовавших веществ. Однако, создавая новые вещества, которые должны служить во благо, учёные создавали и такие вещества, которые становились угрозой для человечества.

Задумался я над этим, когда изучал историю I мировой войны, узнал, что в 1915г. немцы использовали для победы на французском фронте газовые атаки ядовитыми веществами. Что оставалось делать остальным странам, чтобы сохранить жизнь и здоровье солдат?

В первую очередь – создать противогаз, что было выполнено успешно Н.Д.Зелинским. Он говорил: «Я изобрёл его не для нападения, а для защиты молодых жизней от страданий и смертей». Ну а потом, как цепная реакция, стали создаваться новые вещества – начало эпохи химического оружия.

Как относится к этому?

С одной стороны вещества «стоят» на защите стран. Без многих химических веществ мы уже не представляем своей жизни, ибо они созданы на благо цивилизации (пластмассы, каучук, и т.д.). С другой стороны – часть веществ можно использовать для уничтожения, они несут «смерть».

Цель моего реферата: расширить и углубить знания о применении химических веществ.

Задачи: 1) Рассмотреть, как используются химические вещества в военном деле.

2) Познакомиться с вкладом учёных в победу ВОВ.

Органические вещества

В 1920 – 1930 гг. возникла угроза развязывания второй мировой войны. Крупнейшие мировые державы лихорадочно вооружались, наибольшие усилия для этого прилагали Германия и СССР. Немецкими учёными были созданы отравляющие вещества нового поколения. Однако Гитлер не решился развязать химическую войну, вероятно понимая, что последствия её для сравнительно маленькой Германии и необъятной России будут несоизмеримы.

После Второй мировой войны гонка химических вооружений продолжалась на более высоком уровне. В настоящее развитые страны не производят химическое оружие, однако на планете скопились огромные запасы смертоносных отравляющих веществ, что представляет серьёзную опасность для природы и общества

На вооружение были приняты и хранятся на складах иприт, люизит, зарин, зоман, V -газы, синильная кислота, фосген, и ещё один продукт, который принято изображать шрифтом « VX ». Рассмотрим их подробнее.

а) Зарин представляет собой бесцветную или желтого цвета жидкость почти без запаха, что затрудняет обнаружение его по внешним признакам. Он относится к классу нервно-паралитических отравляющих веществ. Зарин предназначается, прежде всего, для заражения воздуха парами и туманом, то есть в качестве нестойкого ОВ. В ряде случаев он, однако, может применяться в капельно-жидком виде для заражения местности и находящейся на ней боевой техники; в этом случае стойкость зарина может составлять: летом - несколько часов, зимой - несколько суток.

Зарин вызывает поражение через органы дыхания, кожу, желудочно-кишечный тракт; через кожу воздействует в капельно-жидком и парообразном состояниях, не вызывая при этом местного ее поражения. Степень поражения зарином зависит от его концентрации в воздухе и времени пребывания в зараженной атмосфере.

При воздействии зарина у пораженного наблюдаются слюнотечение, обильное потоотделение, рвота, головокружение, потеря сознания, приступы сильных судорог, паралич и, как следствие сильного отравления, смерть.

Формула зарина:

­ C 3 H 7 O O

CH 3 F

б) Зоман - бесцветная и почти без запаха жидкость. Относится к классу нервно-паралитических ОВ. По многим свойствам очень похож на зарин. Стойкость зомана несколько выше, чем у зарина; на организм человека он действует примерно в 10 раз сильнее.

Формула зомана:

( CH 3 ) 3 C – CH (CH 3 ) - ( CH 3 ) 3 C

в) V-газы представляют собой малолетучие жидкости с очень высокой температурой кипения, поэтому стойкость их во много раз больше, чем стойкость зарина. Так же как зарин и зоман, относятся к нервно-паралитическим отравляющим веществам. По данным иностранной печати, V-газы в 100 - 1000 раз токсичнее других ОВ нервно-паралитического действия. Они отличаются высокой эффективностью при действии через кожные покровы, особенно в капельно-жидком состоянии: попадание на кожу человека мелких капель V-газов, как правило, вызывает смерть человека.

г) Иприт - темно-бурая маслянистая жидкость с характерным запахом, напоминающим запах чеснока или горчицы. Относится к классу кожно-нарывных ОВ. Иприт медленно испаряется с зараженных участков; стойкость его на местности составляет: летом - от 7 до 14 дней, зимой - месяц и более. Иприт обладает многосторонним действием на организм: в капельно-жидком и парообразном состояниях он поражает кожу и глаза, в парообразном - дыхательные пути и легкие, при попадании с пищей и водой внутрь поражает органы пищеварения. Действие иприта проявляется не сразу, а спустя некоторое время, называемое периодом скрытого действия. При попадании на кожу капли иприта быстро впитываются в нее, не вызывая болевых ощущений. Через 4 - 8 часов на коже появляется краснота и чувствуется зуд. К концу первых и началу вторых суток образуются мелкие пузырьки, но затем они сливаются в одиночные большие пузыри, заполненные янтарно-желтой жидкостью, которая со временем становится мутной. Возникновение пузырей сопровождается недомоганием и повышением температуры. Через 2 - 3 дня пузыри прорываются и обнажают под собой язвы, не заживающие в течение длительного времени. Если в язву попадает инфекция, то возникает нагноение и сроки заживания увеличиваются до 5 - 6 месяцев. Органы зрения поражаются парообразным ипритом даже в ничтожно малых концентрациях его в воздухе и времени воздействия 10 минут. Период скрытого действия при этом длится от 2 до 6 часов; затем появляются признаки поражения: ощущение песка в глазах, светобоязнь, слезотечение. Заболевание может продолжаться 10 - 15 дней, после чего наступает выздоровление. Поражение органов пищеварения вызывается при приеме пищи и воды, зараженных ипритом. В тяжелых случаях отравления после периода скрытого действия (30 – 60 минут) появляются признаки поражения: боль под ложечкой, тошнота, рвота; затем наступают общая слабость, головная боль, о ослабление рефлексов; выделения изо рта и носа приобретают зловонный запах. В дальнейшем процесс прогрессирует: наблюдаются параличи, появляется резкая слабость и истощение. При неблагоприятном течении смерть наступает на 3 - 12 сутки в результате полного упадка сил и истощения.

При тяжёлых поражениях спасти человека обычно не удаётся, а при поражении кожи пострадавший надолго теряет трудоспособность.

Формула иприта:

CI – CH 2 - CH 2

CI – CH 2 - CH 2

д) Синильная кислота - бесцветная жидкость со своеобразным запахом, напоминающим запах горького миндаля; в малых концентрациях запах трудно различимый. Синильная кислота легко испаряется и действует только в парообразном состоянии. Относится к ОВ общеядовитого действия. Характерными признаками поражения синильной кислотой являются: металлический привкус во рту, раздражение горла, головокружение, слабость, тошнота. Затем появляется мучительная одышка, замедляется пульс, отравленный теряет сознание, наступают резкие судороги. Судороги наблюдаются сравнительно недолго; на смену им приходит полное расслабление мышц с потерей чувствительности, падением температуры, угнетением дыхания с последующей его остановкой. Сердечная деятельность после остановки дыхания продолжается еще в течение 3 - 7 минут.

Формула синильной кислоты:

HCN

е) Фосген - бесцветная, легколетучая жидкость с запахом прелого сена или гнилых яблок. На организм действует в парообразном состоянии. Относится к классу ОВ удушающего действия.

Фосген имеет период скрытого действия 4 - 6 часов; продолжительность его зависит от концентрации фосгена в воздухе, времени пребывания в зараженной атмосфере, состояния человека, охлаждения организма. При вдыхании фосгена человек ощущает сладковатый неприятный вкус во рту, затем появляются покашливание, головокружение и общая слабость. По выходу из зараженного воздуха признаки отравления быстро проходят, наступает период так называемого мнимого благополучия. Но через 4 - 6 часов у пораженного наступает резкое ухудшение состояния: быстро развиваются синюшное окрашивание губ, щек, носа; появляются общая слабость, головная боль, учащенное дыхание, сильно выраженная одышка, мучительный кашель с отделением жидкой, пенистой, розоватого цвета мокроты указывает на развитие отека легких. Процесс отравления фосгеном достигает кульминационной фазы в течение 2 - 3 суток. При благоприятном течении болезни у пораженного постепенно начнет улучшаться состояние здоровья, а в тяжелых случаях поражения наступает смерть.

Формула фосгена:

COCI 2

д) Диметиламид лизергиновой кислоты является отравляющим веществом психохимического действия. При попадании в организм человека через 3 минуты появляется лёгкая тошнота и расширение зрачков, а затем - галлюцинации слуха и зрения, продолжающиеся в течение нескольких часов

Неорганические вещества в военном деле.

Немцы впервые применили химическое оружие 22апреля 1915г. вблизи г. Ипр: начали газовую атаку против французских и английских войск. Из 6 тысяч металлических баллонов было выпущено 180т. хлора по ширине фронта в 6 км. Затем они применили хлор в качестве ОВ и против русской армии. В результате только первой газобаллонной атаки было поражено около 15 тысяч солдат, из них 5 тысяч погибли от удушенья. Для защиты от отравления хлором стали применять пропитанные раствором поташа и питьевой соды повязки, а затем противогаз, в котором для поглощения хлора использовали тиосульфат натрия.

Позднее появились более сильные отравляющие вещества, содержащие хлор: иприт, хлорпикрин, хлорциан, удушающий газ фосген и др.

Уравнение реакции получения фосгена:

C І 2 + CO = COCI 2 .

При проникновении в организм человека фосген подвергается гидролизу:

COCI 2 + H 2 O = CO 2 + 2 HCI ,

что приводит к образованию соляной кислоты, от которой воспаляются ткани дыхательных органов и затрудняется дыхание.

Фосген используют и в мирных целях: в производстве красителей, в борьбе с вредителями и болезнями сельскохозяйственных культур.

Хлорную известь (CaOCI 2 ) используют в военных целях как окислитель при дегазации, разрушающий боевые отравляющие вещества, и в мирных целях – для отбеливания хлопчатобумажных тканей, бумаги, для хлорирования воды, дезинфекции. Применение этой соли основано на том, что при взаимодействии её с оксидом углерода (IV ) выделяется свободная хлорноватистая кислота, которая разлагается:

2CaOCI 2 + CO 2 + H 2 O = CaCO 3 + CaCI 2 + 2HOCI;

HOCI = HCI + O .

Кислород в момент выделения энергично окисляет и разрушает отравляющие и другие отравляющие вещества, оказывает отбеливающие и дезинфицирующие действие.

Оксиликвит - взрывоопасная смесь любой горючей пористой массы с жидким кислородом . Их использовали во время первой мировой войны вместо динамита.

Главное условие выбора горючего материала для оксиликвита – его достаточная рыхлость, способствующая лучшей пропитке его жидким кислородом. Если горючий материал плохо пропитан, то после взрыва часть его останется несгоревшей. Оксиликвитный патрон – это длинный мешочек, наполненный горючим материалом, в который вставляется электрический запал. В качестве горючего материала для оксиликвитов используют древесные опилки, уголь, торф. Патрон заряжают непосредственно перед закладкой в шпур, погружая его в жидкий кислород. Таким способом иногда готовили патроны и в годы Великой Отечественной войны, хотя в основном для этой цели использовали тринитротолуол. В настоящее время оксиликвиты применяют в горной промышленности для взрывных работ.

Рассматривая свойства серной кислоты , важно о её использовании при производстве взрывчатых веществ (тротил, октоген, пикриновая кислота, тринитроглицерин) в качестве водоотнимающего средства в составе нитрирующей смеси (HNO 3 и H 2 SO 4 ).

Раствор аммиака (40 %-ный) применяют для дегазации техники, транспорта, одежды и т.д. в условиях применения химического оружия (зарин, зоман, табун).

На основе азотной кислоты получают ряд сильных взрывчатых веществ: тринитроглицерин, и динамит, нитроклетчатку (пироксилин), тринитрофенол (пикриновую кислоту), тринитротолуол и др.

Хлорид аммония NH 4 CI применяют для наполнения дымовых шашек: при возгорании зажигательной смеси хлорид аммония разлагается, образуя густой дым:

NH 4 CI = NH 3 + HCI .

Такие шашки широко использовали в годы Великой Отечественной войны.

Нитрат аммония служит для производства взрывчатых веществ - аммонитов, в состав которых входят ещё и другие взрывчатые нитросоединения, а также горючие добавки. Например, в состав аммонала входит тринитротолуол и порошкообразный алюминий. Основная реакция, которая протекает при его взрыве:

3NH 4 NO 3 + 2Al = 3N 2 + 6H 2 O + Al 2 O 3 + Q.

Высокая теплота сгорания алюминия повышает энергию взрыва. Нитрат алюминия в смеси с тринитротолуолом (толом) даёт взрывчатое вещество аммотол. Большинство взрывчатых смесей содержат в своём составе окислитель (нитраты металлов или аммония и др.) и горючие (дизельное топливо, алюминий, древесную муку и др.).

Нитраты бария, стронция и свинца используют в пиротехнике.

Рассматривая применение нитратов , можно рассказать об истории получения и применения чёрного, или дымного, пороха – взрывчатой смеси нитрата калия с серой и углём (75 % KNO 3 , 10% S , 15 % C ). Реакция горения дымного пороха выражается уравнением:

2 KNO 3 + 3 C + S = N 2 + 3 CO 2 + K 2 S + Q .

Два продукта реакции – газы, а сульфид калия – твёрдое вещество, образующее после взрыва дым. Источник кислорода при сгорании пороха – нитрат калия. Если сосуд, например запаянная с одного конца трубка, закрыт подвижным телом ­– ядром, то оно под напором пороховых газов выбрасывается. В этом проявляется метательное действие пороха. А если стенки сосуда, в котором находится порох, недостаточно прочны, то сосуд разрывается под действием пороховых газов на мелкие осколки, которые разлетаются вокруг с огромной кинетической энергией. Это бризантное действие пороха. Образующийся сульфид калия – нагар – разрушает ствол оружия, поэтому после выстрела для чистки оружия используют специальный раствор, в состав которого входит карбонат аммония.

Шесть веков продолжалось господство чёрного пороха в военном деле. За столь длительный срок его состав практически не изменился, менялся лишь способ производства. Только в середине прошлого века вместо чёрного пороха стали использовать новые взрывчатые вещества с большей разрушительной силой. Они быстро вытеснили чёрный порох с военной техники. Теперь его применяют в качестве взрывчатого вещества в горном деле, в пиротехнике (ракеты, фейерверки), а также как охотничий порох.

Фосфор (белый) широко применяют в военном деле в качестве зажигательного вещества, используемого для снаряжения авиационных бомб, мин, снарядов. Фосфор легко воспламеняется и при горении выделяет большое количество теплоты (температура горения белого фосфора достигает 1000 - 1200°С). При горении фосфор плавится, растекается и при попадании на кожу вызывает долго не заживающие ожоги, язвы.

При сгорании фосфора на воздухе получается фосфорный ангидрид, пары которого притягивают влагу из воздуха и образуют пелену белого тумана, состоящего из мельчайших капелек раствора метафосфорной кислоты. На этом свойстве основано его применение в качестве дымообразующего вещества.

На основе орто - и метафосфорной кислот созданы самые токсичные фосфорорганические отравляющие вещества (зарин, зоман, VX – газы) нервно-паралитического действия. Защитой от их вредного воздействия служит противогаз.

Графит благодаря его мягкости широко используют для получения смазочных материалов, применяющихся в условиях высоких и низких температур. Чрезвычайная жаростойкость и химическая инертность графита позволяют использовать его в атомных реакторах на атомных подводных лодках в виде втулок, колец, как замедлитель тепловых нейтронов, конструкционный материал в ракетной технике.

Сажу (технический углерод) применяют в качестве наполнителя резины, используемой для оснащения бронетанковой, авиационной, автомобильной, артиллерийской и другой военной техники.

Активированный уголь – хороший адсорбент газов, поэтому его применяют как поглотитель отравляющих веществ в фильтрующих противогазах. В годы Первой мировой войны были большие человеческие потери, одной из главных причин было отсутствие надёжных индивидуальных средств защиты от отравляющих веществ. Н.Д.Зелинский предложил простейший противогаз в виде повязки с углём. В дальнейшем он вместе с инженером Э.Л.Кумантом усовершенствовал простые противогазы. Они предложили изоляционно-резиновые противогазы, благодаря которым были спасены жизни миллионов солдат.

Оксид углерода ( II ) (угарный газ) входит в группу общеядовитого химического оружия: он соединяется с гемоглобином крови, образуя карбоксигемоглобин. В результате этого гемоглобин утрачивает способность связывать и переносить кислород, наступает кислородное голодание и человек погибает от удушья.

В боевой обстановке при нахождении в зоне горения огнеметно-зажигательных средств, в палатках и других помещениях с печным отоплением, при стрельбе закрытых помещениях может произойти отравление угарным газом. А так как оксид углерода (II ) имеет высокие диффузионные свойства, то обычные фильтрующие противогазы не способны очистить заражённый этим газом воздух. Учёные создали кислородный противогаз, в специальных патронах которого помещены смешанные окислители: 50 % оксида марганца (IV ), 30 % оксида меди (II ), 15 % оксида хрома (VI ) и 5 % оксида серебра. Находящийся в воздухе оксид углерода (II ) окисляется в присутствии этих веществ, например:

CO + MnO 2 = MnO + CO 2 .

Человеку, поражённому угарным газом, необходимы свежий воздух, сердечные средства, сладкий чай, в тяжёлых случаях – в дыхание кислорода, искусственное дыхание.

Оксид углерода ( IV )(углекислый газ) в 1,5 раза тяжелее воздуха, не поддерживает процессы горения, применяется для тушения пожаров. Углекислотный огнетушитель заполнен раствором гидрокарбоната натрия, а в стеклянной ампуле находится серная или соляная кислота. При ведении огнетушителя в рабочее состояние начинает протекать реакция:

2 NaHCO 3 + H 2 SO 4 = Na 2 SO 4 + 2 H 2 O + 2 CO 2 .

Выделяющийся углекислый газ обволакивает плотным слоем очаг пожара, прекращая доступ кислорода воздуха к горящему объекту. В годы Великой Отечественной войны такие огнетушители использовали при защите жилых зданий городов и промышленных объектов.

Оксид углерода (IV ) в жидком виде – хорошее средство, используемое в пожаротушении реактивных двигателей, устанавливаемых на современных военных самолётах.

Кремний , будучи полупроводником, находит широкое применение в современной военной электронике. Его используют при изготовлении солнечных батарей, транзисторов, диодов, детекторов частиц в приборах радиационного контроля и радиационной разведки.

Жидкое стекло (насыщенные растворы Na 2 SiO 3 и K 2 SiO 3 ) – хорошая огнезащитная пропитка для тканей, дерева, бумаги.

Силикатная промышленность производит различные виды оптических стёкол, используемых в военных приборах (бинокли, перископы, дальномеры); цемент для сооружения военно-морских баз, шахтных пусковых установок, защитных сооружений.

В виде стеклянного волокна стекло идёт на производство стеклопластиков , используемых в производстве ракет, подводных лодок, приборов.

При изучении металлов рассмотрим их применение в военном дел

Благодаря прочности, твёрдости, жаростойкости, электропроводности, способности подвергаться механической обработке металлы находят широчайшее применение в военном деле: в самолёто- и ракетостроении, при изготовлении стрелкового оружия и бронированной техники, подводных лодок и военно-морских кораблей, снарядов, бомб, радиоаппаратуры и т.д.

Алюминий обладает высокой коррозионной стойкостью к воде, однако имеет небольшую прочность. В авиа- и ракетостроении применяют сплавы алюминия с другими металлами: медью, марганцем, цинком, магнием, железом. Термически обработанные соответствующим образом, эти сплавы отличаются прочностью, сравниваемой с прочностью среднелегированной стали.

Так, некогда самая мощная в США ракета «Сатурн-5», с помощью которой были запущены космические корабли серии «Аполлон», сделана из алюминиевого сплава (алюминий, медь, марганец). Из алюминиевого сплава делают корпуса боевых межконтинентальных баллистических ракет «Титан-2». Лопасти винтов самолётов и вертолётов изготавливают из сплава алюминия с магнием и кремнием. Этот сплав может работать в условиях вибрационных нагрузок и обладает очень высокой коррозийной стойкостью.

Термит (смесь Fe 3 O 4 c порошком AI ) применяют для изготовления зажигательных бомб и снарядов. При поджигании этой смеси происходит бурная реакция с выделением большого количества теплоты:

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe + Q.

Температура в зоне реакции достигает 3000°С. При такой высокой температуре плавится броня танков. Термитные снаряды и бомбы обладают большой разрушительной силой.

Натрий как теплоноситель применяют для отвода тепла от клапанов в авиамоторах, как теплоноситель в атомных реакторах (в сплаве с калием).

Пероксид натрия Na 2 O 2 применяют как регенератор кислорода на военных подводных. Твёрдый пероксид натрия, заполняющий систему регенерации, взаимодействует с углекислым газом:

2Na 2 O 2 + 2 CO 2 = 2 Na 2 CO 3 + O 2 .

Эта реакция лежит в основе современных изолирующих противогазов (ИП), которые используют в условиях недостатка кислорода в воздухе, применение боевых отравляющих веществ. Изолирующие противогазы находятся на вооружении экипажей современных военно-морских кораблей и подводных лодок, именно эти противогазы обеспечивают выход экипажа из затопленного танка.

Гидроксид натрия используют для приготовления электролита для щёлочных аккумуляторных батарей, которыми снаряжают современные военные радиостанции.

Литий используют при изготовлении трассирующих пуль и снарядов. Соли лития придают им яркий сине-зелёный след. Литий применяют также в атомной и термоядерной технике.

Гидрид лития служил американским лётчикам в годы Второй мировой войны портативным источником водорода. При авариях над морем под действием воды таблетки гидрида лития моментально разлагались, наполняя водородом спасательные средства – надувные лодки, плоты, жилеты, сигнальные шары-антенны:

LiH + H 2 O = LiOH + H 2 .

Магний используют в военной техники при изготовлении осветительных и сигнальных ракет, трассирующих пуль, снарядов и зажигательных бомб. При поджигании магния очень яркое, ослепительно белого цвета пламя, за счёт которого удаётся в ночное время осветить значительную часть территории.

Лёгкие и прочные сплавы магния с медью, алюминием, титаном, кремнием, находят широкое применение в ракето-, машино-, самолетостроении. Из них готовят шасси и стойки шасси для военных самолётов, отдельные детали для корпусов ракет.

Железо и сплавы на его основе (чугун и сталь) широко используют в военных целях. При создании современных систем вооружения применяют разнообразные марки легированных сталей.

Молибден придает стали высокую твёрдость, прочность и вязкость. Известен следующий факт: броня английских танков, участвующих в сражениях Первой мировой войны, была изготовлена из но хрупкой марганцевой стали. Снаряды немецкой артиллерии свободно пробивали массивный панцирь из такой стали толщиной 7,5 см. Но стоило прибавить к стали лишь 1,5-2% молибдена, как танки стали неуязвимыми при толщине броневого листа 2,5 см. Молибденовая сталь идёт на изготовление брони танков, корпусов кораблей, стволов орудий, ружей, деталей самолётов.

Кобальт применяют при создании жаропрочных сталей, которые идут на изготовление деталей авиационных двигателей, ракет.

Хром­ придаёт стали твёрдость и износоустойчивость. Хромом легируют пружинные и рессорные стали, применяемые в автомобильной, бронетанковой, ракетно-космической и других видах военной технике.

Вклад учёных химиков в победу в ВОВ.

Велики заслуги учёных в предвоенное и настоящее время, я остановлюсь на вкладе учёных в победу ВОВ. Поскольку работа учёных не только помогла победе, но и заложила основу мирного существования в послевоенный период.

Учёные химики принимали самое активное участие в обеспечении победы над фашисткой Германией. Они разрабатывали новые способы производства взрывчатых веществ, топлива для реактивных снарядов, высокооктановых бензинов, каучуков, броневой стали, лёгких сплавов для авиации, лекарственных препаратов.

Объём производства химической продукции к концу войны приблизился к довоенному уровню: в 1945 г. он составил 92 % от показателей 1940 г.

Академик Александр Ерминингельдович Арбузов - основоположник одного из новейших направлений науки – химии фосфорорганических соединений. Его деятельность была неразрывно связана с прославленной Казанской школой химиков. исследования Арбузова были всецело посвящены нуждам обороны и медицины. Так, в марте 1943 г. физик-оптик С.И. Вавилов писал Арбузову: «Обращаюсь к Вам с большой просьбой – изготовить в вашей лаборатории 15 г 3,6-диаминофтолимида. Оказалось, что этот препарат, полученный от Вас, обладает ценными свойствами в отношении флуоресценции и адсорбции и сейчас нам необходим для изготовления нового оборонного оптического прибора». Препарат был, его использовали при изготовлении оптики для танков. Это имело большое значение для обнаружения врага на далёком расстоянии. В дальнейшим А.Е.Арбузов выполнял и другие заказы оптического института на изготовление различных реактивов.

С именем академика Николая Дмитриевича Зелинского связана целая эпоха в истории отечественной химии. Ещё в Первую мировую войну он создал противогаз. В период 1941-1945гг. Н.Д.Зелинский возглавлял научную школу, исследования которой были направлены на разработку способов получения высокооктанового топлива для авиации, мономеров для синтетического каучука.

Вклад академика Николая Николаевича Семёнова в обеспечение победы определялся разработанной им теории цепных разветвлённых реакций, которая позволяла управлять химическими процессами: ускорять реакции вплоть до образования взрывной лавины, замедлять и даже останавливать их на любой промежуточной станции. В начале 40-х гг. Н.Н.Семёнов и его сотрудники исследовали процессы взрыва, горения, детонации. Результаты этих исследований в том или ином виде использовались во время войны при производстве патронов, артиллерийских снарядов, взрывчатых веществ, зажигательных смесей для огнемётов. Результаты исследований, посвященных вопросам отражения и столкновения ударных волн при взрывах, были использованы уже в первый период войны при создании кумулятивных снарядов, гранат и мин для борьбы с вражескими танками.

Академик Александр Евгеньевич Ферсман не говорил, что его жизнь – жизнь история любви к камню. Первооткрыватель и неутомимый исследователь апатитов на Кольском полуострове, радиевых руд в Фергане, серы в Каракумах, вольфрамовых месторождений в Забайкалье, один из создателей промышленности редких элементов, он с первых дней войны активно включился в процесс переведения науки и промышленности на военные рельсы. Он выполнял специальные работы по военно-инженерной геологии, военной географии, по вопросам изготовления стратегического сырья, маскировочных красок. В 1941 г. на антифашистском митинге учёных он говорил: «Война потребовала грандиозного количества основных видов стратегического сырья. Потребовался целый ряд новых металлов для авиации, для бронебойной стали, потребовался магний, стронций для осветительных ракет и факелов, потребовалось больше йода… И на нас лежит ответственность за обеспечение стратегическим сырьём, мы должны помочь своими знаниями создать лучшие танки, самолёты, чтобы скорее освободить все народы от нашествия гитлеровской банды».

Крупнейший химик-технолог Семен Исаакович Вольфкович исследовал соединения фосфора, был директором НИИ удобрений и инсектицидов. Сотрудники этого института создавали фосфорно-серные сплавы для бутылок, которые служили противотанковыми «бомбами», изготовляли химические грелки для бойцов, дозорных, разрабатывали необходимые санитарной службе средства против обморожений, ожогов, другие лекарственные препараты.

Профессор Военной академии химической защиты Иван Людвигович Кнунянц разработал надёжные средства индивидуальной защиты людей от отравляющих веществ. За эти исследования в 1941 г. он был удостоен Государственной премии СССР.

Ещё до начала Великой отечественной войны профессор Военной академии химической защиты Михаил Михайлович Дубинин проводил исследования сорбции газов, паров и растворённых веществ твёрдыми пористыми телами. М.М.Дубинин – призванный авторитет по всем основным вопросам, связанных с противохимической защитой органов дыхания.

С самого начала войны перед учёными была поставлена задача: разработать и организовать производство препаратов для борьбы с инфекционными заболеваниями, в первую очередь с сыпным тифом, переносчиками которого являются вши. Под руководством Николая Николаевича Мельникова было организованно производство дуста, а также различных антисептиков для деревянных самолётов.

Академик Александр Наумович Фрумкин – один из основоположников современного учения об электрохимических процессах, основатель школы электрохимиков. Изучал вопросы защиты металлов от коррозии, разработал физико-химический метод крепления грунтов для аэродромов, рецептуру для огнезащитной пропитки дерева. Вместе с сотрудниками разработал электрохимические взрыватели. Он говорил: «Несомненно, что химия является одним из существенных факторов, от которых зависит успех современной войны. Производство взрывчатых веществ, качественных сталей, лёгких металлов, топлива – всё это разнообразные виды применения химии, не говоря уж о специальных формах химического оружия. В современной войне немецкая химия подарила миру пока одну «новинку» - это массовое применение возбуждающих и наркотических веществ, которые дают немецким солдатам перед тем, как послать их на верную смерть. Советские химики призывают учёных всего мира использовать свои знания для борьбы с фашизмом».

Академик Сергей Семенович Наметкин – один из основоположников нефтехимии, успешно работал в области синтеза новых металлорганических соединений, отравляющих и взрывчатых веществ. Во время войны занимался вопросами химической защиты , развитием производства моторных топлив и масел.

Исследования Валентина Алексеевича Каргина охватывали широкий круг вопросов физической химии, электрохимии и физикохимии высокомолекулярных соединений. Во время войны В.А.Каргин разработал специальные материалы для изготовления одежды, защищающей от действия отравляющих веществ, принцип и технологию нового метода обработки защитных тканей, химические составы, делающие валяную обувь непромокаемой, специальные типы резин для боевых машин нашей армии.

Профессор, начальник Военной академии химической защиты и начальник кафедры аналитической химии Юрий Аркадьевич Клячко организовал из состава академии батальон и был начальником боевого участка на ближайших подступах к Москве. Под его руководством была развёрнута работа по созданию новых средств химической обороны, в том числе исследования дымов, антидотов, огнемётных средств.

17 июня 1925 г. 37 государств подписали Женевский протокол – международное соглашение о запрещении применения на войне удушливых, ядовитых или других подобных газов. К 1978 г. документ подписали почти все страны.

Заключение.

Химическое оружие, конечно, нужно уничтожать и кок можно быстрее, это смертельное оружие против человечества. Ещё люди помнят, как фашисты в концлагерях умертвили сотни тысяч человек в газовых камерах, как американские войска испытывали химическое оружие во время войны во Вьетнаме.

Применение химического оружия в наши дни запрещено международным соглашением. В первой половине XX в. отравляющие вещества либо топили в море, либо закапывали в землю. Чем это чревато- пояснять не надо. Сейчас отравляющие вещества сжигают, но и этот способ имеет свои недостатки. При горении в обычном пламени их концентрация в отходящих газах в десятки тысяч раз превышает предельно допустимую. Относительную безопасность даёт высокотемпературный дожиг отходящих газов в плазменной электропечи (метод, принимаемый в США).

Другой подход к уничтожению химического оружия заключается в предварительном обезвреживании отравляющих веществ. Образовавшиеся нетоксичные массы можно сжечь или переработать в твёрдые нерастворимые блоки, которые затем захоронить в специальных могильниках или использовать в дорожном строительстве.

В настоящее время широко обсуждается концепция уничтожения отравляющих веществ непосредственно в боеприпасах, предлагается переработка нетоксичных реакционных масс в химическую продукцию коммерческого назначения. Но уничтожение химического оружия и научные исследования в этой области требуют больших капиталовложений.

Хотелось бы надеяться, что проблемы будут решены и мощь химической науки будет направлена не на разработку новых отравляющих веществ, а на решение глобальных проблем человечества.

Используемая литература:

Кушнарев А.А. химическое оружие: вчера, сегодня, завтра//

Химия в школе – 1996 - №1;

Химия в школе – 4’2005

Химия в школе – 7’2005

Химия в школе – 9’2005;

Химия в школе – 8’2006

Химия в школе – 11’2006.

«История химии» - М 6. Образование тумана. Н 8. Фотосинтез. П 9. Испарение жидкой ртути. Д.И. Менделеев. Цель: знакомство с физическими и химическими явлениями, историей развития химии. Агрикола горное дело. Я 11.Образование ржавчины на гвозде. И 10.Подгорание пищи на перегретой сковороде. А.М. Бутлеров. Е 7. Почернение серебряных изделий.

«История химии как науки» - Аррениус. Больцман. Бор. Бойль. Новые методы исследования. Достижения алхимии. Великие ученые – химики. Органическая химия. Атомная теория. Пневматическая химия. Бертло. Бекетов. Авогадро. Промышленная химия. Биохимия. Техническая химия. Алхимия. Берцелиус. Ятрохимия. Структурная химия. Греческая натурфилософия.

«Начало химии» - Покорение огня. Шумеры. Производство керамики. Фармакопея. Источники знаний. Предалхимический период в истории химии. Глина. Найдены два папируса. Сок растения. Происхождение слова «химия». Папирус Эберса. Множество химических ремесел.

«Стихи о химии» - Если здесь метилбурат. В беге жизни и забот Ваш « безжизненный» азот! Клянемся мы – решать задачи! Высший класс – дешевое, простое. Не угаснет на оксиды, поверьте, спрос, Ведь лучшего класса в мире нет! Спичку взяли только в руки, И засиял огонь в момент. Ну конечно не со всеми, Чаще в виде удобрений.

«Михаил Кучеров» - Общий вклад в развитие химии. Реакция Кучерова позволила получать уксусную кислоту в промышленных масштабах. Кучеров Михаил Григорьевич. Цели нашей работы. Данное свойство было использовано Кучеровым для присоединения воды к ацетиленам. В лабораторных исследованиях реакция Кучерова используется по сегодняшний день.

«Вклад Ломоносова в химию» - Химия. Закон сохранения вещества. Вклад Ломоносова. Подробный проект. Ломоносов провел серию опытов. Ломоносов. Истинный химик. М.В. Ломоносов. Широкая программа физико-химических опытов. Стол химика. Закон сохранения массы.

Всего в теме 31 презентация

МБОУ лицей № 104 г. Минеральные Воды. «Роль металлов в Победе » . 70 - летию Победы посвящается… работа ученика 8 в класса Михайлова Ивана. 2015 год


Актуальность данного исследования состоит в том, что реальных участников событий Великой Отечественной войны почти не осталось в жизни, наши ровесники знают о войне лишь из книг и кинофильмов. Но память человеческая несовершенна, многие события забываются. Мы должны знать реальных людей, которые приближали победу и подарили нам будущее. Работая над проектом, из книг, энциклопедий, газетных и журнальных статей мы узнавали все новые факты о вкладе науки в Победу. Об этом надо рассказывать, этот материал надо приумножать и хранить, чтобы люди знали и помнили, кому мы обязаны годами мирной жизни без войны, кто спас мир от чумы фашизма.


Эпиграф. «Нам руки даны, чтобы землю обнять И сердцем ее отогреть. Нам память дана, чтобы павших поднять И вечную славу им петь, Осколком снаряда береза пробита, И буквы легли на гранит... Ничто не забыто, ничто не забыто, Никто не забыт!


Гипотеза.

Какова роль металлов в Великой Отечественной войне?


  • Узнать о вкладе ученых- химиков в дело великой Победы над фашистс- кой Германией.
  • Получить информацию о новых, неизвестных ранее фактах о применении свойств некоторых металлов.

Задачи проекта. - проследить, какую же роль сыграли элементы-металлы на войне; -узнать, что сделали ученые-химики для великой Победы. Обратить внимание на их стойкость, мужество, самоотверженность, оценить их вклад в дело Победы над врагом; -реализовать связь между химией, историей и литературой; - воспитывать в учащихся чувство патриотизма, преданности и любви к своей Родине, уважительное отношение к ветеранам войны и тыла, способствовать воспитанию чувства гордости за самоотверженный труд учёных в годы войны, показать и подтвердить значение химических знаний для жизни.




«Я не вижу моего врага- немца-конструктора, который сидит над

своими чертежами... в глубоком убежище.

Но, не видя его, я воюю с ним... Я знаю, что бы ни придумал немец, я обязан придумать лучше.

Я собираю всю мою волю и фантазию,

все мои знания и опыт... чтобы в день, когда два новых самолета - наш и вражеский - столкнутся в военном небе, наш оказался победителем»

Лавочкин С.А., авиаконструктор


Необходимо было своими знаниями создать лучшие танки, самолеты, чтобы скорее освободить все народы от нашествия гитлеровской банды, чтобы снова наука могла спокойно заниматься своим мирным трудом, чтобы она могла поставить на службу человечеству всю сумму природных богатств, положить всю менделеевскую таблицу к ногам освобожденного и радостного человечества”. Ферсман А.Е., академик



Арбузов Александр Ерминингельдович

Он изготовил препарат – 3,6 диаминофталимид, обладающий флуоресцентной способностью. Этот препарат был использован при изготовлении оптики для танков.


Китайгородский Исаак Ильич

Создал бронестекло, которое в 25 раз прочнее обычного стекла.


Фаворский Алексей Евграфович

Он изучил химические свойства и превращения

вещества – ацетилена. Разработал важнейший метод получения виниловых эфиров, используемых в оборонительной промышленности


Ферсман Александр Евгеньевич

Он выполнял специальные работы по военно-инженерной геологии, военной географии, по вопросам стратегического сырья, маскировочных красок.





Когда советские танки Т-34 появились на полях сражений, немецкие специалисты были поражены неуязвимостью их брони, которая содержала большой процент никеля и делала её

сверхпрочной



Алюминий называют «крылатым» металлом.

Алюминий использовали для защиты самолетов, так как радиолокационные станции не улавливали сигналы от приближающихся самолетов. Помехи были вызваны лентами из алюминиевой фольги, при налётах на Германию было сброшено примерно 20 тыс. тонн алюминиевой фольги.






Трассирующие пули с добавкой лития при полете оставляли сине-зеленый свет.

Соединения лития используются на подводных лодках для очистки воздуха.



Колоссальная масса железа истрачена на земном шаре в ходе войн. За Вторую Мировую - примерно 800 млн. тонн.

Более 90% всех металлов, которые использовались в Великой Отечественной Войне, приходится на железо.


Для изготовления брони танков и пушек применялась сталь (сплав железа, вольфрама с углеродом до 2% и другими элементами)

Нет такого элемента, при участии которого проливалось бы так много крови, терялось бы столько жизней, происходило бы столько несчастий.



Сплавы железа в виде броневых плит и литья толщиной 10-100 мм использовались

при изготовлении корпусов и башен танков, бронепоездов


Страшное железо

далекой войны







Зажигательная бомба








танковая броня

винтовка










Ванадий называют «автомобильным» металлом. Ванадиевая сталь дала возможность облегчить автомобили, сделать новые машины прочнее, улучшить их ходовые качества. Из этой стали изготавливают солдатские каски, шлемы, броневые плиты на пушках.








Название этой болезни – оловянная чума. Солдатские пуговицы нельзя хранить на морозе. Хлорид олова ( IV ) – жидкость, использовалась для образования дымовых завес.






Без германия не было бы

радио-локаторов



Кобальт называют металлом чудесных сплавов(жаропрочных, быстрорежущих)

Кобальтовая сталь использовалась для изготовления магнитных мин



Специалисты по военной технике считают, что из тантала целесообразно изготовлять некоторые детали управляемых снарядов и реактивных двигателей.

Первоначально тантал использовался для изготовления проволоки для ламп накаливания.





  • Исходя из полученной информации, можно сделать следующие выводы:
  • Роль металлов в Победе в ВОВ очень велика.
  • Только ум, находчивость, самоотверженный труд наших ученых-химиков позволили металлам в полной мере проявить свои свойства и тем самым приблизить долгожданную Победу.
  • Хотелось бы надеяться, что мощь этой прекрасной науки – химии – будет направлена не на создание новых видов оружия, не на разработку новых отравляющих веществ, а на решение глобальных общечеловеческих проблем.

Кто про химика сказал: “Мало воевал”, Кто сказал: “Он мало крови проливал?” Я в свидетели зову химиков–друзей, Тех, кто смело бил врага до последних дней, Тех, кто с армией родной шел в одном строю, Тех, кто грудью защитил Родину мою. Сколько пройдено дорог, фронтовых путей… Сколько полегло на них молодых парней… Не померкнет никогда память о войне, Слава химикам живым, павшим - честь вдвойне. Старший преподаватель ДХТИ, бывший фронтовик З.И. Барсуков


  • Богданова Н.А. Из опыта работы металлов главных подгрупп. //Химия в школе. – 2002. - №2.– С. 44 – 46.
  • Габриелян О.С. Настольная книга учителя химии. 9 класс. – М.: Блик и К0, 2001. – 397 с.
  • Габриелян О.С., Лысова Г.Г. методическое пособие. Химия 11 класс. – М.: Дрофа, 2003. – 156 с.
  • Евстифеева А.Г., Шевченко О.Б., Курень С.Г. Дидактический материал к урокам химии. - Ростов-на- Дону.: Феникс, 2004. – 348 с.
  • Егоров А.С., Иванченко Н.М., Шацкая К.П. Химия внутри нас. – Ростов-на- Дону.: Феникс, 2004. – 180 с.
  • Интернет-ресурсы
  • Колтун М. Мир химии. – М.: Детская литература, 1988. – 303 с.
  • Ксенофонтова И.Н. Модульная технология: изучаем металлы. //Химия в школе. – 2002. - №2.- С. 37 – 42.
  • Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии. – М.: Экзамен, оникс 21 век, 2001.– 719 с.
  • Курдюмов Г.М. 1234 вопроса по химии. – М.: Мир, 2004. – 191 с.
  • Ледовская Е.М. Металлы в организме человека. //Химия в школе. – 2005. - №3.– С. 44 – 47.
  • Пинюкова А.Г. Независимое расследование по теме «Щелочные металлы». //Химия в школе.– 2002. - №1. – С. 25 – 30.
  • Сгибнева Е.П., Скачков А.В. Современные открытые уроки химии. 8- 9 классы. – Ростов-на-Дону: Феникс, 2002. – 318 с.
  • Шиленкова Ю.В., Шиленков Р.В. Модуль: строение атомов, физические и химические свойства, применение щелочных металлов. //Химия в школе. – 2002. - №2. – С. 42 – 44 .


Ветераны уйдут. Как их нам не забыть?

Как суметь уберечь нам их в сердце с тобою?

Или всё, что досталось такою ценой,

Будет нами распродано, будет забыто…

Юрий Стародубцев


Мне кажется порою, что солдаты,

С кровавых не пришедшие полей,

Не в землю эту полегли когда-то,

А превратились в белых журавлей.

Они до сей поры с времен тех дальних

Не потому ль так часто и печально

Мы замолкаем, глядя в небеса?

Расул Гамзатов

Дата создания: 2014/03/24

Год от года всё убыстряющимися темпами развивается военное дело. Своим прогрессом оно обязано многим отраслям знаний. Огромное значение в этом процессе играет химия. Успехи химии позволили совершить поистине революционные преобразования в боевой технике и способах вооруженной борьбы. Без участия химии, использования её достижений нельзя себе представить создание химического оружия, отравляющих веществ, развитие производства взрывчатых веществ.

Неорганические вещества в военном деле

Кислород - сильный окислитель. Все процессы горения (горение пороха при проведении выстрела из всех видов стрелкового оружия, разнообразных орудий, ракетно-артиллерийских систем), взрывы мин, снарядов, фугасов, гранат происходят при прямом и непосредственном участии кислорода.

Любое пористое горючее вещество, например опилки, будучи пропитанными голубоватой холодной жидкостью - жидким кислородом, становится взрывчатым веществом. Такие вещества называются оксиликвитами и в случае необходимости могут заменить динамит.

При запуске и полете ракет, самолетов и вертолетов, при движении автомобилей, разнообразных боевых машин (танков, самоходных установок, боевых машин пехоты), движении кораблей необходимая для этого энергия появляется за счет процессов окисления разнообразных видов топлива. Чистый жидкий кислород применяют как окислитель в реактивных двигателях, как окислитель ракетных топлив. Поэтому баки с жидким кислородом - неотъемлемая принадлежность большинства жидкостных ракетных двигателей.

Нельзя забывать и о том, что кислород необходим для обеспечения дыхания и жизнедеятельности человека, поэтому так много внимания уделяется пополнению запасов кислорода в замкнутом объеме, например, на подводных лодках, на пунктах боевого дежурства ракетчиков и т.д. В состав системы регенерации воздуха подводного корабля входят кислородные баллоны и электролитические генераторы. Под действием постоянного тока в генераторах дистиллированная вода разлагается на кислород и водород. Одна такая установка, по данным зарубежной печати, способна производить до 70 кубических метров кислорода в сутки. В качестве аварийного средства пополнения запасов кислорода не только на подводных лодках, но и на космических кораблях используются так называемые хлоратные свечи - цилиндрической формы шашки, отлитые или спрессованные из смеси хлората натрия, железного порошка, пероксида бария и стеклянной ваты. При сгорании свечей хлорат натрия разлагается на хлорид натрия и кислород. Одна такая свеча дает до трех кубических метров кислорода.

Велико значение серы для военного дела. Еще древние китайцы изобрели черный или дымный порох. В 682 году философ-химик Сунь Сы-Мяо описал его состав и рецепт приготовления. Позднее, в XII веке, в Китае появилось и первое огнестрельное оружие - бамбуковая трубка, заряженная порохом и пулей. Затем рецепты изготовления пороха попали через Индию и арабские государства в Европу. Так в арабских книгах XIII-XIV веков даны описания многих способов грубой и тонкой очистки природной селитры при действии на нее зольного щелока с последующей перекристаллизацией образовавшегося продукта. В тех же источниках содержатся рецепты зажигательных смесей и пиротехнических составов для так называемых «китайских стрел» или «китайских огненных копий». Черный порох состоит из 75% селитры , 15% угля и 10% серы .

Первым ставшим известным в России рецептом изготовления черного пороха стал рецепт, описанный Максимом Греком в 1250 году в «Книге огня»: «Возьми один фунт живой серы, 2 фунта липового или ивого угля, 6 фунтов селитры. Очень мелко разотри эти три вещества на мраморной доске и смешай». Еще в книгах по арабскому военному искусству XIV века описаны способы использования такого пороха для стрельбы: вначале в дуло орудия засыпался "пороховой заряд", а поверх него - слой «орехов» (вероятно, свинцовых шариков). При воспламенении пороха образующиеся газы (молекулярный азот, углекислый газ, угарный газ, кислород в смеси с дымом, содержащим сульфат и карбонат калия) с силой выбрасывали «орехи» из ствола пушки. Изобретение пороха и применение его в военных целях, способствовало дальнейшему совершенствованию вооружения (привело к появлению пушек и ружей).

В 1839 году американец Чарльз Гудьир разработал способ вулканизации каучука, то есть способ превращения каучука в резину. Под действием серы при умеренном нагревании каучук приобретал большую твердость, прочность, становился менее чувствительным к переменам температуры. С тех пор началось победное шествие резинотехнических изделий по земному шару. В настоящее время уже невозможно представить не только развитие современного автомобилестроения, но авиации и даже космонавтики. Поскольку огромную роль в обеспечении живучести любого из названных (и не названных) видов техники играют именно разнообразные уплотнительные детали (прокладки, втулки, шланги и т.д.), сделанные из резины. Так, например, в такой небольшой машине, как легковой автомобиль типа "ФИАТ-124", число резиновых технических деталей составляет около 460 штук (288 наименований), а в современном военно-транспортном самолете число таких деталей превышает 100.000 штук. Для того, чтобы изготовить автомобиль нужно израсходовать около 14 кг серы.

Водо- и газонепроницаемость резины используются при создании современных средств защиты органов дыхания (противогаза) и кожных покровов (общевойсковой защитный комплект). Поэтому сера расходуется и на изготовление этих средств индивидуальной защиты. А, вместе с тем, сера как элемент, входит и в состав отравляющих веществ: иприта, кислородного иприта.

В качестве окислителя жидкого ракетного топлива на основе авиационных бензинов и керосинов применяется как сама концентрированная азотная кислота , так 20%-ный раствор диоксида азота (IV) в концентрированной азотной кислоте. Оксид азота (IV) вводится с целью снижения корродирующих свойств азотной кислоты, повышения стабильности окислителя и усиления его окислительных свойств. Интересно, что другой из оксидов азота - оксид азота (I) , так называемый "веселящий газ" или закись азота, используется в военной медицине как анестезирующее вещество при проведении операций под общим наркозом.

Очень важным является применение натриевой селитры (нитрата натрия) для производства желатин-динамита как одного из наиболее часто используемого взрывчатого вещества. Его состав: 62.5% нитроглицерина, 2,5% коллоксилина. 25% натриевой селитры. 8% древесной муки. Динамиты имеют большую энергию взрыва и относятся к числу самых мощных взрывчатых веществ.

Фосфор , как простое вещество, применяется в качестве одного из дымообразующих веществ, предназначенных для маскировки, и как зажигательное вещество.

Использование белого фосфора в качестве дымообразующего вещества в настоящее время является очень эффективным, так как маскирующие свойства его дыма в 3-4 раза выше, чем дымов других веществ. Горящий белый фосфор наносит тяжелые болезненные и трудноизлечимые ожоги. Применяется он или в обычном виде (твердое воскообразное вещество желтоватого цвета) или в пластифицированном виде (смесь белого фосфора с вязким раствором синтетического каучука, спрессованная в гранулы). Горящий белый фосфор, а температура его горения достигает 1200С, вызывает тяжелые болезненные и трудноизлечимые ожоги. При горении белый фосфор плавится, растекается. Любая попытка стряхнуть его заканчивается тем, что белый фосфор "размазывается" по еще большей площади, продолжая гореть. Тушить фосфор надо путем прекращения доступа к нему кислорода, прикрывая горящее место плотной тканью или засыпая песком. Пораженные участки тела необходимо промыть водой и наложить влажную повязку, смоченную 5%-ным раствором сульфата меди (II). При разрыве снаряда разрывного действия происходит вспышка длительностью 3-5 секунд, при этом фосфор разбрасывается вокруг и горит на грунте в течение 10-12 минут, при этом возникает столб густого белого дыма. Пластифицированный белый фосфор применяется для снаряжения не только снарядов, но и авиационных бомб, а также мин. Пластифицированный белый фосфор в отличие от обычного белого фосфора обладает способностью прилипать к вертикальным поверхностям и прожигать их. Белый фосфор часто применяется в качестве воспламенителя напалма и пирогеля в различных зажигательных боеприпасах.

Углекислый газ выделяется при приведении в боевое состояние углекислотных огнетушителей за счет протекания реакции взаимодействия гидрокарбоната натрия с серной кислотой. Сжиженным оксидом углерода (IV) снаряжаются системы пожаротушения реактивных двигателей, установленных на современных военных самолетах. Из солей угольной кислоты в военном деле широко применяется кальцинированная сода, пищевая сода и карбонат аммония. Раствор карбоната натрия применяется в качестве дегазатора дифосгена. 1-2%-ный раствор карбоната натрия используется для дегазации обмундирования кипячением; 1-2%-ный раствор пищевой соды - для промывания глаз, полостей рта и носа при поражении отравляющими веществами, карбонат аммония - в специальных машинах для получения аммиака с целью введения его в паровоздушно-аммиачную смесь при дегазации обмундирования.

Кремний один из основных полупроводниковых материалов в современной военной электронике. Приборы на его основе могут работать при температурах 200 градусов по Цельсию. Его используют для изготовления интегральных схем, диодов, транзисторов, солнечных батарей, фотоприемников, детекторов частиц в приборах радиационного контроля и радиационной разведки. Силикагель - белый, непрозрачный, чрезвычайно пористый продукт - используется в качестве адсорбента паров и газов. Силикагелем, обезвоженным гелем кремниевой кислоты, наполняют специальные тряпичные или мешочки, которые используют для обеспечения нормальных условий приборов и техники, находящейся на складах "НЗ", Жидкое стекло (раствор силиката натрия ) является хорошей огнезащитной пропиткой для тканей, дерева и бумаги.

Углерод как элемент входит в состав разнообразных видов горюче-смазочных материалов, взрывчатых веществ, зажигательных веществ, отравляющих веществ, лекарственных препаратов, современных полимерных материалов и т.д. Графит (аллотропная модификация углерода) является незаменимым материалом в разнообразных электрохимических производствах, он служит для изготовления электродов и нагревательных элементов электрических печей, скользящих контактов для электрических машин, самосмазывающихся подшипников и колец электромашин (в виде смеси с алюминием, магнием и свинцом под названием "граффалой"). Его используют в атомной технике (например, на атомных подводных лодках) в виде блоков, втулок, колец в реакторах, как замедлитель тепловых нейтронов и конструкционный материал в ракетной технике - для изготовления сопел ракетных двигателей, деталей внешней и внутренней теплозащиты, так как углерод в виде графита обладает чрезвычайной жаростойкостью и химической инертностью.

Древесный уголь в смеси с серой и селитрой используется в качестве черного пороха. Сажа как мелкокристаллическая модификация углерода входит в состав резины, идущей на производство разнообразных резинотехнических изделий, используемых в различных видах военной техники: автомобильной, бронетанковой, авиационной, артиллерийской, ракетной и т.д. Одним из самых интересных применений углерода в виде древесного угля является его использование в качестве адсорбента газов, отравляющих веществ в фильтрующих противогазах. Из соединений углерода для военного дела имеет оксид углерода (II) , так как на его основе синтезируют отравляющее вещество удушающего действия фосген (дихлорангидрид угольной кислоты). Дихлорангидрид угольной кислоты впервые был получен в 1811 году Дж. Деви (Англия), который и дал новому соединению название «фосген». С мая 1915 года фосген начал применяться Германией в смеси с хлором. В дальнейшем всеми воюющими странами применялся чистый фосген, которым снаряжались в основном артиллерийские химические снаряды. Всего в первую мировую войну было произведено 40 тысяч т фосгена. В 1935 году фосген применялся итальянской армией при нападении ее на Эфиопию, японская армия применяла его во время войны с Китаем (1937 - 1945 гг.). В годы второй мировой войны на вооружении иностранных армий состояли боеприпасы, снаряженные фосгеном, предназначенные для уничтожения живой силы ингаляционным путем. В настоящее время фосген как отравляющее вещество снят с вооружения, однако имеющиеся производственные мощности только в США превышают 0,5 млн. т в год, так как фосген применяется в производстве пестицидов, пластмасс, красителей, безводных хлоридов металлов.

Фосген действует на клеточные мембраны капилляров и альвеол. При отравлениях фосгеном происходит местное повышение проницаемости легочных капилляров и альвеол, в результате альвеолы заполняются плазмой крови и нормальный газообмен в легких нарушается. При отравлениях тяжелой степени более 30% плазмы крови переходит в легкие, которые разбухают, увеличиваются в массе с 500 - 600 г в нормальных условиях до 2,5 кг. Диффузия кислорода из легких в кровеносные капилляры затрудняется, кровь обедняется кислородом при одновременном увеличении содержания углекислого газа. Недостаток кислорода, потеря плазмы, повышенное содержание белковых молекул повышают вязкость крови почти вдвое. Эти потери затрудняют кровообращение и ведут к опасной перегрузке сердечной мышцы и падению кровяного давления. Токсический отек легких является причиной гибели организма из-за прекращения окислительно-восстановительных процессов. Фосген страшен тем, что антидотов против этого ОB нет.

Признаки токсического отека легких проявляются после периода скрытого действия, продолжающегося в среднем 4-6 часов. В течение всего периода скрытого действия пораженные не ощущают никаких признаков отравления. Коварство фосгена состоит еще в том, что первоначально чувствуется его запах (прелого сена или гнилых яблок), а затем он притупляет обонятельный нерв. К концу периода скрытого действия возникают першение и жжение в носоглотке, позывы к кашлю. В последующем кашель усиливается, наступает одышка. Губы, нос, уши, конечности синеют, пульс становится реже. Развивающийся отек легких ведет к сильному удушью, мучительному давлению в грудной клетке. Возрастает частота дыхания в 2-4 раза по сравнению со спокойным состоянием, пульс учащается до 100 ударов в минуту. Пораженные беспокойны, мечутся, хватают ртом воздух, но всякие движения еще более ухудшают состояние. Отек легких и угнетение дыхательного центра вызывают смертельный исход. В случае пребывания людей в атмосфере фосгена с концентрацией свыше 5 мг/л смерть может наступить через 2-3 секунды. Фосген обладает кумулятивным действием, то есть он способен накапливаться в организме, что может привести к смертельному исходу. Защитой от фосгена является противогаз.