Наследуемость состава волокон скелетных мышц. Скелетные мышцы. Группы скелетных мышц. Строение и функции скелетных мышц. Белые мышечные волокна

Мышечная ткань осуществляет двигательные функции организма. У части гистологических элементов мышечной ткани имеются сократительные единицы - саркомеры (см. рис. 6-3). Это обстоятельство позволяет различать два типа мышечных тканей. Один из них - по- перечно-полоcатая (скелетная и сердечная) и второй - гладкая. Во всех сократительных элементах мышечных тканей (поперечно-полосатое скелетное мышечное волокно, кардиомиоциты, гладкомышечные клетки - ГМК), а также в немышечных сократительных клетках функционирует актомиозиновый хемомеханический преобразователь. Сократительную функцию скелетной мышечной ткани (произвольная мускулатура) контролирует нервная система (соматическая двигательная иннервация). Непроизвольные мышцы (сердечная и гладкая) имеют вегетативную двигательную иннервацию, а также развитую систему гуморального контроля. Для ГМК характерна выраженная физиологическая и репаративная регенерация. В составе скелетных мышечных волокон присутствуют стволовые клетки (клетки-сателлиты), поэтому скелетная мышечная ткань потенциально способна к регенерации. Кардиомиоциты находятся в фазе G 0 клеточного цикла, а стволовые клетки в сердечной мышечной ткани отсутствуют. По этой причине погибшие кардиомиоциты замещаются соединительной тканью.

Скелетная мышечная ткань

У человека более 600 скелетных мышц (около 40% массы тела). Скелетная мышечная ткань обеспечивает осознанные и осознаваемые произвольные движения тела и его частей. Основные гистологические элементы: скелетные мышечные волокна (функция сокращения) и клетки-сателлиты (камбиальный резерв).

Источники развития гистологических элементов скелетной мышечной ткани - миотомы и нервный гребень.

Миогенный клеточный тип последовательно складывается из следующих этапов: клетки миотома (миграция) → миобласты митотические (пролиферация) → миобласты постмитотические (слияние) → мы-

шечные трубочки (синтез сократительных белков, формирование саркомеров) → мышечные волокна (функция сокращения).

Мышечная трубочка. После ряда митотических делений миобласты приобретают вытянутую форму, выстраиваются в параллельные цепи и начинают сливаться, образуя мышечные трубочки (миотубы). В мышечных трубочках происходит синтез контрактильных белков и сборка миофибрилл - сократительных структур с характерной поперечной исчерченностью. Окончательная дифференцировка мышечной трубочки наступает только после её иннервации.

Мышечное волокно. Перемещение ядер симпласта на периферию завершает формирование поперечно-полосатого мышечного волокна.

Kлетки-сaтеллиты - обособившиеся в ходе миогенеза G 1 -миобласты, расположенные между базальной мембраной и плазмолеммой мышечных волокон. Ядра этих клеток составляют 30% у новорождённых, 4% у взрослых и 2% у пожилых от суммарного количества ядер скелетного мышечного волокна. Клетки-сателлиты - камбиальный резерв мышечной ткани скелетного типа. Они сохраняют способность к миогенной дифференцировке, что обеспечивает рост мышечных волокон в длину в постнатальном периоде. Клетки-сателлиты также участвуют в репаративной регенерации скелетной мышечной ткани.

СКЕЛЕТНОЕ МЫШЕЧНОЕ ВОЛОКНО

Структурно-функциональная единица скелетной мышцы - симпласт - скелетное мышечное волокно (рис. 7-1, рис. 7-7), имеет форму протяжённого цилиндра с заострёнными концами. Этот цилиндр достигает в длину 40 мм при диаметре до 0,1 мм. Термином «оболочка волокна» (сярколемма) обозначают две структуры: плазмолемму симпласта и его базальную мембрану. Между плазмолеммой и базальной мембраной расположены клетки-сателлиты с овальными ядрами. Палочковидной формы ядра мышечного волокна лежат в цитоплазме (саркоплазма) под плазмолеммой. В саркоплазме симпласта расположен сократительный аппарат - миофибриллы, депо Ca 2 + - саркоплазматическая сеть (гладкий эндоплазматический ретикулум), а также митохондрии и гранулы гликогена. От поверхности мышечного волокна к расширенным участкам саркоплазматического ретикулума направляются трубковидные впячивания сарколеммы - поперечные трубочки (Т-трубочки). Рыхлая волокнистая соединительная ткань между отдельными мышечными волокнами (эндомизий) содержит кровеносные и лимфатические сосуды, нервные волокна. Группы мышечных волокон и окружающая их в виде чехла волокнистая соединительная ткань (перимизий) формируют пучки. Их совокупность образует мышцу, плотный соединительнотканный чехол которой именуют эпимизий (рис. 7-2).

Миофибриллы

Поперечная исчерченность скелетного мышечного волокна определяется регулярным чередованием в миофибриллах различно преломляю-

Рис. 7-1. Скелетная мышца состоит из поперечно-полосатых мышечных волокон.

Значительный объём мышечного волокна занимают миофибриллы. Расположение светлых и тёмных дисков в параллельных друг другу миофибриллах совпадает, что приводит к появлению поперечной исчерченности. Структурная единица миофибрилл - саркомер, сформированный из толстых (миозиновых) и тонких (актиновых) нитей. Расположение тонких и толстых нитей в саркомере показано справа и внизу. G-актин - глобулярный, F-актин - фибриллярный актин.

Рис. 7-2. Скелетная мышца в продольном и поперечном разрезе. А - продольный разрез; Б - поперечный разрез; В - поперечный срез отдельного мышечного волокна.

щих поляризованный свет участков (дисков) - изотропных и анизотропных: светлые (Isotropic, I-диски) и тёмные (Anisotropic, А-диски) диски. Разное светопреломление дисков определяется упорядоченным расположением по длине саркомера тонких и толстых нитей; толстые нити находятся только в тёмных дисках, светлые диски не содержат толстых нитей. Каждый светлый диск пересекает Z-линия. Участок миофибриллы между соседними Z-линиями определяют как саркомер. Саркомер. Структурно-функциональная единица миофибриллы, находящаяся между соседними Z-линиями (рис. 7-3). Саркомер образуют расположенные параллельно друг другу тонкие (актиновые) и толстые (миозиновые) нити. I-диск содержит только тонкие нити. В середине I-диска проходит Z-линия. Один конец тонкой нити прикреплён к Z-линии, а другой конец направлен к середине сaркомера. Толстые нити занимают центральную часть сaркомера - А-диск. Тонкие нити частично входят между толстыми. Содержащий только толстые нити участок сaркомера - Н-зона. В середине Н-зоны проходит М-линия. I-диск входит в состав двух сaркомеров. Следовательно, каждый сaр- комер содержит один А-диск (тёмный) и две половины I-диска (светлого), формула саркомера - 1 / 2 I + А + 1 / 2 I.

Рис. 7-3. Саркомер содержит один А-диск (тёмный) и две половины I-диска (светлого). Толстые миозиновые нити занимают центральную часть саркомера. Титин соединяет свободные концы миозиновых нитей с Z-линией. Тонкие актиновые нити одним концом прикреплены к Z-линии, а другим направляются к середине сяркомера и частично входят между толстыми нитями.

Толстая нить. Каждая миозиновая нить состоит из 300-400 молекул миозина и С-белка. Половина молекул миозина обращена головками к одному концу нити, а вторая половина - к другому. Гигантский белок титин связывает свободные концы толстых нитей с Z-линией.

Тонкая нить состоит из актина, тропомиозина и тропонинов (рис. 7-6).

Рис. 7-5. Толстая нить. Молекулы миозина способны к самосборке и формируют веретенообразный агрегат диаметром 15 нм и длиной 1,5 мкм. Фибриллярные хвосты молекул образуют стержень толстой нити, головки миозина расположены спиралями и выступают над поверхностью толстой нити.

Рис. 7-6. Тонкая нить - две спирально скрученные нити F-актина. В канавках спиральной цепочки залегает двойная спираль тропомиозина, вдоль которой располагаются молекулы тропонина.

Саркоплазматическая сеть

Каждая миофибрилла окружена регулярно повторяющимися элементами сaркоплазматического ретикулума - анастомозирующими мембранными трубочками, заканчивающимися терминальными цистернами (рис. 7-7). На границе между тёмным и светлым дисками две смежные терминальные цистерны контактируют с Т-трубочками, образуя так называемые триады. Саркоплазматический ретикулум - модифицированная гладкая эндоплазматическая сеть, выполняющая функцию депо кальция.

Сопряжение возбуждения и сокращения

Сарколемма мышечного волокна образует множество узких впячиваний - поперечных трубочек (Т-трубочки). Они проникают внутрь мышечного волокна и, залегая между двумя терминальными цистернами сaркоплазматического ретикулума, вместе с последними формируют триады. В триадах происходит передача возбуждения в виде потенциала действия плазматической мембраны мышечного волокна на мембрану терминальных цистерн, т.е. процесс сопряжения возбуждения и сокращения.

ИННЕРВАЦИЯ СКЕЛЕТНЫХ МЫШЦ

В скелетных мышцах различают экстрафузальные и интрафузальные мышечные волокна.

Экстрафузальные мышечные волокна, осуществляющие функцию сокращения мышцы, имеет прямую двигательную иннервацию - нервно-мышечный синапс, образованный терминальным ветвлением аксона α-мотонейрона и специализированным участком плазмолеммы мышечного волокна (концевая пластинка, постсинаптическая мембрана, см. рис. 8-29).

Интрафузальные мышечные волокна входят в состав чувствительных нервных окончаний скелетной мышцы - мышечных веретён. Интрафузальные мышеч-

Рис. 7-7. Фрагмент скелетного мышечного волокна. Цистерны саркоплазматического ретикулума окружают каждую миофибриллу. Т-трубочки подходят к миофибриллам на уровне границ между тёмными и светлыми дисками и вместе с терминальными цистернами саркоплазматического ретикулума образуют триады. Между миофибриллами залегают митохондрии.

ные волокна образуют нервно-мышечные синапсы с эфферентными волокнами γ-мотонейронов и чувствительные окончания с волокнами псевдоуниполярных нейронов спинномозговых узлов (рис. 7-9, рис. 8-27). Двигательная соматическая иннервация скелетных мышц (мышечных волокон) осуществляется α- и γ-мотонейронами передних рогов спин-

Рис. 7-9. Иннервация экстрафузальных и интрафузальных мышечных волокон. Экстрафузальные мышечные волокна скелетных мышц туловища и конечностей получают двигательную иннервацию от α-мотонейронов передних рогов спинного мозга. Интрафузальные мышечные волокна в составе мышечных веретён имеют как двигательную иннервацию от γ-мотонейронов, так и чувствительную (афферентные волокна Iа и II типов чувствительных нейронов спинномозгового узла).

ного мозга и двигательных ядер черепных нервов, а чувствительная соматическая иннервация - псевдоуниполярными нейронами чувствительных спинномозговых узлов и нейронами чувствительных ядер черепных нервов. Вегетативная иннервация мышечных волокон не обнаружена, но ГМК стенки кровеносных сосудов скелетных мышц имеют симпатическую адренергическую иннервацию.

СОКРАЩЕНИЕ И РАССЛАБЛЕНИЕ

Сокращение мышечного волокна происходит при поступлении по аксонам двигательных нейронов к нервно-мышечным синапсам (см. рис. 8-29) волны возбуждения в виде нервных импульсов и выброса нейромедиатора ацетилхолина из концевых разветвлений аксона. Дальнейшие события развёртываются следующим образом: деполяризация постсинаптической мембраны → распространение потенциала действия по плазмолемме → передача сигнала через триады на саркоплазматическую сеть → выброс ионов Ca 2 + из саркоплазмати-

ческой сети → взаимодействие тонких и толстых нитей, в результате чего происходит укорочение саркомера и сокращение мышечного волокна → расслабление.

ТИПЫ МЫШЕЧНЫХ ВОЛОКОН

Скелетные мышцы и образующие их мышечные волокна различаются по множеству параметров. Традиционно выделяют красные, белые и промежуточные, а также медленные и быстрые мышцы и волокна.

Красные (окислительные) мышечные волокна небольшого диаметра, окружены массой капилляров, содержат много миоглобина. Их многочисленные митохондрии имеют высокой уровень активности окислительных ферментов (например, сукцинатдегидрогеназы).

Белые (гликолитические) мышечные волокна имеют больший диаметр, в саркоплазме содержится значительное количество гликогена, митохондрии немногочисленны. Для них характерны низкая активность окислительных ферментов и высокая активность гликолитических ферментов.

Промежуточные (окислительно-гликолитические) волокна имеют умеренную активность сукцинатдегидрогеназы.

Быстрые мышечные волокна имеют высокую активность АТФазы миозина.

Медленные волокна имеют низкую АТФазную активность миозина. Реально мышечные волокна содержат комбинации различных характеристик. Поэтому на практике различают три типа мышечных волокон - быстросокращающиеся красные, быстросокращающиеся белые и медленносокращающиеся промежуточные.

РЕГЕНЕРАЦИЯ И ТРАНСПЛАНТАЦИЯ МЫШЦ

Физиологическая регенерация. В скелетной мышце постоянно происходит физиологическая регенерация - обновление мышечных волокон. При этом клетки-сателлиты вступают в циклы пролиферации с последующей дифференцировкой в миобласты и их включением в состав предсуществующих мышечных волокон.

Репаративная регенерация. После гибели мышечного волокна под сохранившейся базальной мембраной активированные клетки-сателлиты дифференцируются в миобласты. Далее постмитотические миобласты сливаются, образуя мышечные трубочки. Синтез сократительных белков начинается в миобластах, а в мышечных трубочках происходят сборка миофибрилл и образование саркомеров. Миграция ядер на периферию и формирование нервно-мышечного синапса завершают образование зрелых мышечных волокон. Таким образом, в ходе репаративной регенерации происходит повторение событий эмбрионального миогенеза.

Трансплантация. При пересадке мышц используют лоскут из широчайшей мышцы спины. Извлечённый из ложа вместе с собствен-

ными сосудами и нервом лоскут трансплантируют в место дефекта мышечной ткани. Начинают применять и перенос камбиальных клеток. Так, при наследственных мышечных дистрофиях в дефектные по гену дистрофина мышцы вводят нормальные по этому признаку в 0 -миобласты. При таком подходе рассчитывают на постепенное обновление дефектных мышечных волокон нормальными.

Сердечная мышечная ткань

Поперечно-полосатая мышечная ткань сердечного типа образует мышечную оболочку стенки сердца (миокард). Основной гистологический элемент - кардиомиоцит.

Кардиомиогенез. Миобласты происходят из клеток спланхнической мезодермы, окружающей эндокардиальную трубку. После ряда митотических делений Gj-ми- областы начинают синтез сократительных и вспомогательных белков и через стадию G 0 -миобластов дифференцируются в кардиомиоциты, приобретая вытянутую форму. В отличие от поперечно-полосатой мышечной ткани скелетного типа, в кардиомиогенезе не происходит обособления камбиального резерва, а все кардиомиоциты необратимо находятся в фазе G 0 клеточного цикла.

КАРДИОМИОЦИТЫ

Клетки (рис. 7-21) расположены между элементами рыхлой волокнистой соединительной ткани, содержащей многочисленные кровеносные капилляры бассейна венечных сосудов и терминальные ветвления двигательных аксонов нервных клеток вегетативного отдела нервной

Рис. 7-21. Сердечная мышца в продольном (А) и поперечном (Б) разрезе.

системы. Каждый миоцит имеет сарколемму (базальная мембрана + плазмолемма). Различают рабочие, атипичные и секреторные кардиомиоциты.

Рабочие кардиомиоциты

Рабочие кардиомиоциты - морфо-функциональные единицы сердечной мышечной ткани, имеют цилиндрическую ветвящуюся форму диаметром около 15 мкм (рис. 7-22). При помощи межклеточных контактов (вставочные диски) рабочие кардиомиоциты объединены в так называемые сердечные мышечные волокна - функциональный синцитий - совокупность кардиомиоцитов в пределах каждой камеры сердца. Клетки содержат центрально расположенные, вытянутые вдоль оси одно или два ядра, миофибриллы и ассоциированные с ними цистерны саркоплазматического ретикулума (депо Ca 2 +). Многочисленные митохондрии залегают параллельными рядами между миофибриллами. Их более плотные скопления наблюдают на уровне I-дисков и ядер. Гранулы гликогена сконцентрированы на обоих полюсах ядра. Т-трубочки в кардиомиоцитах - в отличие от скелетных мышечных волокон - проходят на уровне Z-линий. В связи с этим Т-трубочка контактирует только с одной терминальной цистерной. В результате вместо триад скелетного мышечного волокна формируются диады.

Сократительный аппарат. Организация миофибрилл и саркомеров в кардиомиоцитах такая же, что и в скелетном мышечном волокне. Одинаков и механизм взаимодействия тонких и толстых нитей при сокращении.

Вставочные диски. На концах контактирующих кардиомиоцитов имеются интердигитации (пальцевидные выпячивания и углубления). Вырост одной клетки плотно входит в углубление другой. На конце такого выступа (поперечный участок вставочного диска) сконцентрированы контакты двух типов: десмосомы и промежуточные. На боковой поверхности выступа (продольный участок вставочного диска) имеется множество щелевых контактов (nexus, нексус), передающих возбуждение от кардиомиоцита к кардиомиоциту.

Предсердные и желудочковые кардиомиоциты. Предсердные и желудочковые кардиомиоциты относятся к разным популяциям рабочих кардиомиоцитов. Предсердные кардиомиоциты относительно мелкие, 10 мкм в диаметре и длиной 20 мкм. В них слабее развита система Т-трубочек, но в зоне вставочных дисков значительно больше щелевых контактов. Желудочковые кардиомиоциты крупнее (25 мкм в диаметре и до 140 мкм в длину), они имеют хорошо развитую систему Т-трубочек. В состав сократительного аппарата миоцитов предсердий и желудочков входят разные изоформы миозина, актина и других контрактильных белков.

Рис. 7-22. Рабочий кардиомиоцит - удлинённой формы клетка. Ядро расположено центрально, вблизи ядра находятся комплекс Гольджи и гранулы гликогена. Между миофибриллами лежат многочисленные митохондрии. Вставочные диски (на врезке) служат для скрепления кардиомиоцитов и синхронизации их сокращения.

Секреторные кардиомиоциты. В части кардиомиоцитов предсердий (особенно правого) у полюсов ядер располагаются хорошо выраженный комплекс Гольджи и секреторные гранулы, содержащие атриопептин - гормон, регулирующий артериальное давление (АД). При повышении АД стенка предсердия сильно растягивается, что стимулирует предсердные кардиомиоциты к синтезу и секреции атриопептина, вызывающего снижение АД.

Атипичные кардиомиоциты

Этот устаревший термин относится к миоцитам, формирующим проводящую систему сердца (см. рис. 10-14). Среди них различают водители ритма и проводящие миоциты.

Водители ритма (пейсмейкерные клетки, пейсмейкеры, рис. 7-24) - совокупность специализированных кардиомиоцитов в виде тонких волокон, окружённых рыхлой соединительной тканью. По сравнению с рабочими кардиомиоцитами они имеют меньшие размеры. В саркоплазме содержится сравнительно мало гликогена и небольшое количество миофибрилл, лежащих в основном по периферии клеток. Эти клетки имеют богатую васкуляризацию и двигательную вегетативную иннервацию. Главное свойство водителей ритма - спонтанная деполяризация плазматической мембраны. При достижении критического значения возникает потенциал действия, распространяющийся через электрические синапсы (щелевые контакты) по волокнам проводящей системы сердца и достигающий рабочих кардиомиоцитов. Проводящие кардиомиоциты - специализированные клетки предсердно-желудочкового пучка Гиса и волокон Пуркинье образуют длинные волокна, выполняющие функцию проведения возбуждения от водителей ритма.

Предсердно-желудочковый пучок. Кардиомиоциты этого пучка проводят возбуждение от водителей ритма к волокнам Пуркинье, содержат относительно длинные миофибриллы, имеющие спиральный ход; мелкие митохондрии и небольшое количество гликогена.

Рис. 7-24. Атипичные кардиомиоциты. А - водитель ритма синусно-предсердного узла; Б - проводящий кардиомиоцит предсердно-желудочкового пучка.

Волокна Пуркинье. Проводящие кардиомиоциты волокон Пуркинье - самые крупные клетки миокарда. В них содержатся редкая неупорядоченная сеть миофибрилл, многочисленные мелкие митохондрии, большое количество гликогена. Кардиомиоциты волокон Пуркинье не имеют Т-трубочек и не образуют вставочных дисков. Они связаны при помощи десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает высокую скорость проведения импульса по волокнам Пуркинье.

ДВИГАТЕЛЬНАЯ ИННЕРВАЦИЯ СЕРДЦА

Парасимпатическая иннервация осуществляется блуждающим нервом, а симпатическая - адренергическими нейронами шейного верхнего, шейного среднего и звездчатого (шейно-грудного) ганглиев. Терминальные отделы аксонов вблизи кардиомиоцитов имеют варикозные расширения (см. рис. 7-29), регулярно расположенные по длине аксона на расстоянии 5-15 мкм друг от друга. Вегетативные нейроны не образуют нервно-мышечных синапсов, характерных для скелетной мышцы. Варикозности содержат нейромедиаторы, откуда и происходит их секреция. Расстояние от варикозностей до кардиомиоцитов в среднем составляет около 1 мкм. Молекулы нейромедиаторов высвобождаются в межклеточное пространство и путём диффузии достигают своих рецепторов в плазмолемме кардиомиоцитов. Парасимпатическая иннервация сердца. Преганглионарные волокна, идущие в составе блуждающего нерва, заканчиваются на нейронах сердечного сплетения и в стенке предсердий. Постганглионарные волокна преимущественно иннервируют синусно-предсердный узел, предсердно-желудочковый узел и предсердные кардиомиоциты. Парасимпатическое влияние вызывает уменьшение частоты генерации импульсов пейсмейкерами (отрицательный хронотропный эффект), снижение скорости проведения импульса через предсердно-желудочковый узел (отрицательный дромотропный эффект) в волокнах Пуркинье, уменьшение силы сокращения рабочих предсердных кардиомиоцитов (отрицательный инотропный эффект). Симпатическая иннервация сердца. Преганглионарные волокна нейронов интермедиолатеральных столбов серого вещества спинного мозга образуют синапсы с нейронами паравертебральных ганглиев. Постганглионарные волокна нейронов среднего шейного и звездчатого ганглиев иннервируют синусно-предсердный узел, предсердно-желудочковый узел, предсердные и желудочковые кардиомиоциты. Активация симпатических нервов вызывает увеличение частоты спонтанной деполяризации мембран водителей ритма (положительный хронотропный эффект), облегчение проведения импульса через предсердно-желудочковый узел (положи-

тельный дромотропный эффект) в волокнах Пуркинье, увеличение силы сокращения предсердных и желудочковых кардиомиоцитов (положительный инотропный эффект).

Гладкая мышечная ткань

Основной гистологический элемент гладкомышечной ткани - гладкомышечная клетка (ГМК), способная к гипертрофии и регенерации, а также к синтезу и секреции молекул межклеточного матрикса. ГМК в составе гладких мышц формируют мышечную стенку полых и трубчатых органов, контролируя их моторику и величину просвета. Регуляцию сократительной активности ГМК осуществляют двигательная вегетативная иннервация и множество гуморальных факторов. Развитие. Камбиальные клетки эмбриона и плода (спланхномезодерма, мезенхима, нейроэктодерма) в местах закладки гладкой мускулатуры дифференцируются в миобласты, а затем - в зрелые ГМК, приобретающие вытянутую форму; их сократительные и вспомогательные белки формируют миофиламенты. ГМК в составе гладких мышц находятся в фазе G 1 клеточного цикла и способны к пролиферации.

ГЛАДКОМЫШЕЧНАЯ КЛЕТКА

Морфо-функциональная единица гладкой мышечной ткани - ГМК. Заострёнными концами ГМК вклиниваются между соседними клетками и образуют мышечные пучки, в свою очередь формирующие слои гладкой мускулатуры (рис. 7-26). В волокнистой соединительной ткани между миоцитами и мышечными пучками проходят нервы, кровеносные и лимфатические сосуды. Встречаются и единичные ГМК, например, в подэндотелиальном слое сосудов. Форма ГМК - вытя-

Рис. 7-26. Гладкая мышца в продольном (А) и поперечном (Б) разрезе. На поперечном срезе миофиламенты видны как точки в цитоплазме гладкомышечных клеток.

нутая веретеновидная, часто отростчатая (рис. 7-27). Длина ГМК от 20 мкм до 1 мм (например, ГМК матки при беременности). Овальное ядро локализовано центрально. В саркоплазме у полюсов ядра расположены хорошо выраженный комплекс Гольджи, многочисленные митохондрии, свободные рибосомы, саркоплазматический ретикулум. Миофиламенты ориентированы вдоль продольной оси клетки. Базальная мембрана, окружающая ГМК, содержит протеогликаны, коллагены типов III и V. Компоненты базальной мембраны и эластин межклеточного вещества гладких мышц синтезируются как самими ГМК, так и фибробластами соединительной ткани.

Сократительный аппарат

В ГМК актиновые и миозиновые нити не формируют миофибрилл, характерных для поперечно-полосатой мышечной ткани. Молекулы

Рис. 7-27. Гладкомышечная клетка. Центральное положение в ГМК занимает крупное ядро. У полюсов ядра находятся митохондрии, эндоплазматический ретикулум и комплекс Гольджи. Актиновые миофиламенты, ориентированные вдоль продольной оси клетки, прикреплены к плотным тельцам. Миоциты формируют между собой щелевые контакты.

гладкомышечного актина образуют стабильные актиновые нити, при- креплённые к плотным тельцам и ориентированные преимущественно вдоль продольной оси ГМК. Миозиновые нити формируются между стабильными актиновыми миофиламентами только при сокращении ГМК. Сборку толстых (миозиновых) нитей и взаимодействие актиновых и миозиновых нитей активируют ионы кальция, поступающие из депо Са 2 +. Непременные компоненты сократительного аппарата - кальмодулин (Са 2 +-связывающий белок), киназа и фосфатаза лёгкой цепи гладкомышечного миозина.

Депо Ca 2 + - совокупность длинных узких трубочек (саркоплазматический ретикулум) и находящихся под сарколеммой многочисленных мелких пузырьков (кавеолы). Са 2 +-АТФаза постоянно откачивает Са 2 + из цитоплазмы ГМК в цистерны саркоплазматического ретикулума. Через Са 2+ -каналы кальциевых депо ионы Са 2+ поступают в цитоплазму ГМК. Активация Са 2+ -каналов происходит при изменении мембранного потенциала и при помощи рецепторов рианодина и инозитолтрифосфата. Плотные тельца (рис. 7-28). В саркоплазме и на внутренней стороне плазмолеммы находятся плотные тельца - аналог Z-линий попереч-

Рис. 7-28. Сократительный аппарат гладкомышечной клетки. Плотные тельца содержат α-актинин, это аналоги Z-линий поперечно-полосатой мышцы. В саркоплазме они связаны сетью промежуточных филаментов, в местах их прикрепления к плазматической мембране присутствует винкулин. Актиновые нити прикреплены к плотным тельцам, миозиновые миофиламенты формируются при сокращении.

но-полосатой мышечной ткани. Плотные тельца содержат α-актинин и служат для прикрепления тонких (актиновых) нитей. Щелевые контакты связывают соседние ГМК и необходимы для проведения возбуждения (ионный ток), запускающего сокращение ГМК.

Сокращение

В ГМК, как и в других мышечных тканях, работает актомиозиновый хемомеханический преобразователь, но АТФазная активность миозина в гладкомышечной ткани приблизительно на порядок величины ниже активности АТФазы миозина поперечно-полосатой мышцы. Медленное образование и разрушение актин-миозиновых мостиков требуют меньшего количества АТФ. Отсюда, а также из факта лабильности миозиновых нитей (их постоянная сборка и разборка при сокращении и расслаблении соответственно) вытекает важное обстоятельство - в ГМК медленно развивается и длительно поддерживается сокращение. При поступлении сигнала к ГМК сокращение клетки запускают ионы кальция, поступающие из кальциевых депо. Рецептор Са 2 + - кальмодулин.

Расслабление

Лиганды (атриопептин, брадикинин, гистамин, VIP) связываются с их рецепторами и активируют G-белок (G s), который в свою очередь активирует аденилатциклазу, катализирующую образование цАМФ. Последний активирует работу кальциевых насосов, откачивающих Са 2 + из саркоплазмы в полость саркоплазматического ретикулума. При низкой концентрации Са 2 + в саркоплазме фосфатаза лёгких цепей миозина осуществляет дефосфорилирование лёгкой цепи миозина, что приводит к инактивации молекулы миозина. Дефосфорилированный миозин теряет сродство к актину, что предотвращает образование поперечных мостиков. Расслабление ГМК заканчивается разборкой миозиновых нитей.

ИННЕРВАЦИЯ

Симпатические (адренергические) и отчасти парасимпатические (холинергические) нервные волокна иннервируют ГМК. Нейромедиаторы диффундируют из варикозных терминальных расширений нервных волокон в межклеточное пространство. Последующее взаимодействие нейромедиаторов с их рецепторами в плазмолемме вызывает сокращение либо расслабление ГМК. Существенно, что в составе многих гладких мышц, как правило, иннервированы (точнее находятся рядом с варикозными терминалями аксонов) далеко не все ГМК. Возбуждение ГМК, не имеющих иннервации, происходит двояко: в меньшей степени - при медленной диффузии нейромедиаторов, в большей степени - посредством щелевых контактов между ГМК.

ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ

Рецепторы плазмолеммы ГМК многочисленны. В мембрану ГМК встроены рецепторы ацетилхолина, гистамина, атриопептина, ангиотензина, адреналина, норадреналина, вазопрессина и множество других. Агонисты, связываясь со своими ре-

цепторами в мембране ГМК, вызывают сокращение или расслабление ГМК. ГМК разных органов различно реагируют (сокращением либо расслаблением) на одни и те же лиганды. Это обстоятельство объясняется тем, что существуют разные подтипы конкретных рецепторов с характерным распределением в разных органах.

ТИПЫ МИОЦИТОВ

В основе классификации ГМК находятся различия в их происхождении, локализации, иннервации, функциональных и биохимических свойствах. По характеру иннервации гладкие мышцы делятся на единично и множественно иннервированные (рис. 7-29). Единично иннервированные гладкие мышцы. Гладкие мышцы желудочно-кишечного тракта, матки, мочеточника, мочевого пузыря состоят из ГМК, образующих многочисленные щелевые контакты друг с другом, формируя большие функциональные единицы для синхронизации сокращения. При этом прямую двигательную иннервацию получают лишь отдельные ГМК функционального синцития.

Рис. 7-29. Иннервация гладкомышечной ткани. А. Множественно иннервированная гладкая мышца. Каждая ГМК получает двигательную иннервацию, щелевые контакты между ГМК отсутствуют. Б. Единично иннервированная гладкая мышца. Ин-

нервированы лишь отдельные ГМК. Смежные клетки связаны многочисленными щелевыми контактами, образующими электрические синапсы.

Множественно иннервированные гладкие мышцы. Каждая ГМК мышцы радужки (расширяющие и суживающие зрачок) и семявыносящего протока получает двигательную иннервацию, что позволяет осуществлять тонкую регуляцию сокращения мышц.

Висцеральные ГМК происходят из мезенхимных клеток спланхнической мезодермы и присутствуют в стенке полых органов пищеварительной, дыхательной, выделительной и половой систем. Многочисленные щелевые контакты компенсируют сравнительно бедную иннервацию висцеральных ГМК, обеспечивая вовлечение всех ГМК в процесс сокращения. Сокращение ГМК медленное, волнообразное. Промежуточные филаменты образованы десмином.

ГМК кровеносных сосудов развиваются из мезенхимы кровяных островков. ГМК образуют единично иннервированную гладкую мышцу, но функциональные единицы не такие большие как в висцеральной мускулатуре. Сокращение ГМК сосудистой стенки опосредуют иннервация и гуморальные факторы. Промежуточные филаменты содержат виментин.

РЕГЕНЕРАЦИЯ

Вероятно, среди зрелых ГМК присутствуют недифференцированные предшественники, способные к пролиферации и дифференцировке в дефинитивные ГМК. Более того, дефинитивные ГМК потенциально способны к пролиферации. Новые ГМК возникают при репаративной и физиологической регенерации. Так, при беременности в миометрии происходит не только гипертрофия ГМК, но и значительно увеличивается их общее количество.

Немышечные сокращающиеся клетки Миоэпителиальные клетки

Миоэпителиальные клетки имеют эктодермальный генез и экспрессируют белки, характерные и для эктодермального эпителия (цитокератины 5, 14, 17), и для ГМК (гладкомышечные актин, α-актинин). Миоэпителиальные клетки окружают секреторные отделы и выводные протоки слюнных, слёзных, потовых, молочных желёз, прикрепляясь при помощи полудесмосом к базальной мембране. От тела клетки отходят отростки, охватывающие эпителиальные клетки желёз (рис. 7-30). Стабильные актиновые миофиламенты, прикреплённые к плотным тельцам, и нестабильные миозиновые, формирующиеся в процессе сокращения, - сократительный аппарат миоэпителиальных клеток. Сокращаясь, миоэпителиальные клетки способствуют продвижению секрета из концевых отделов по выводным протокам желёз. Ацетил-

Рис. 7-30. Миоэпителиальная клетка. Корзинчатой формы клетка окружает секреторные отделы и выводные протоки желёз. Клетка способна к сокращению, обеспечивает выведение секрета из концевого отдела.

холин стимулирует сокращение миоэпителиальных клеток слёзных и потовых желёз, норадреналин - слюнных желёз, окситоцин - лактирующих молочных желёз.

Миофибробласты

Миофибробласты проявляют свойства фибробластов и ГМК. Их находят в разных органах (например, в слизистой оболочке кишечника эти клетки известны как «перикриптальные фибробласты»). При заживлении раны часть фибробластов начинает синтезировать гладкомышечные актины и миозины и тем самым способствуют сближению раневых поверхностей.

Дана краткая характеристика мышечных волокон скелетных мышц. Приведены данные о длине, диаметре и площади поперечного сечения. Также описана биохимия сокращения на уровне мышцы (реакции гидролиза и ресинтеза АТФ).

КРАТКАЯ ХАРАКТЕРИСТИКА МЫШЕЧНЫХ ВОЛОКОН СКЕЛЕТНЫХ МЫШЦ

В прошлый раз мы познакомились с тем, из каких основных компонентов состоят наши скелетные мышцы. Теперь мы познакомимся со структурой скелетных мышц и функцией отдельных ее компонентов.

Итак, начнем с самого главного компонента мышцы - мышечных волокон. В мышце мышечные волокна составляют приблизительно 85%. На долю всех остальных компонентов остается 15%.

Длина мышечного волокна

Долгое время считалось, что длина мышечных волокон может быть очень большой, более 30 см. Однако ученый А.Дж. МакКомас в своей книге «Скелетные мышцы» показал, что длина мышечных волокон составляет приблизительно 12 см. Можно, однако возразить: «А как же длинные мышцы? Ведь их длина иногда составляет более 40 см?». А.Дж. МакКомас считает, что длинные мышцы состоят из участков, называемых компартментами . Длина этих участков как раз и составляет 12 см. Портняжная мышца состоит из четырех компартментов, полусухожильная – из трех, двуглавая бедра – из двух.

Более подробно строение и функции мышц описаны в моих книгах "Гипертрофия скелетных мышц человека " и "Биомеханика мышц "

Моль – единица измерения количества вещества. 1 моль равен количеству вещества, в котором содержится N A частиц. N A – постоянная Авогадро. N A = 6,02214179×10 23 .

Лекция 4 . Физиология мышечной ткани

Мышечная ткань выполняет следующие функции:


  1. Обеспечение двигательной активности – целенаправленное поведение есть наиболее эффективная форма приспособления.

  2. Обеспечение особых, присущих только человеку функций – прежде всего это коммуникативная функция , выражающаяся в виде устной и письменной речи.

  3. Выполнение дыхательной функции – экскурсия грудной клетки и диафрагмы.

  4. Участие в процессах теплообразования – терморегуляторный тонус, мышечная дрожь.
Мышечная ткань подразделяется на поперечнополосатую и гладкую . Поперечнополосатая, в свою очередь, делится на скелетную и сердечную . Вся скелетная мускулатура является поперечнополосатой. Во всех висцеральных системах, кроме сердца, имеются гладкие мышцы.

Специфическим свойством всех типов мышц является сократимость – способность сокращаться, то есть укорачиваться или развивать напряжение. Для реализации этой способности мышца использует два своих дополнительных свойствавозбудимость и проводимость .

Скелетные мышцы называют также произвольными , так как их сокращением можно управлять по собственному желанию. Они полностью лишены автоматизма и не способны работать без управляющей импульсации из ЦНС. Гладкие мышцы по собственному желанию не сокращаются, поэтому их называют также непроизвольными .

Морфофункциональная характеристика скелетной мышцы . Скелетная мышца состоит из многоядерных мышечных волокон. Толщина волокна составляет от 10 до 100 мкм. Длина волокон колеблется от нескольких мм до нескольких сантиметров.

Количество мышечных волокон становится постоянным на 4-5 месяце постнатального развития. В последующем увеличивается лишь диаметр и длина волокон (например, под действием тренировок – функциональная гипертрофия).

Мышечное волокно покрыто сарколеммой. В саркоплазме мышечного волокна имеются следующие внутриклеточные элементы: ядра, митохондрии, белки, капельки жира, гранулы гликогена, фосфатсодержащие вещества, различные малые молекулы и электролиты. От поверхности сарколеммы внутрь волокна отходят Т-трубочки, которые обеспечивают её взаимодействие с саркопламатическим ретикулумом. Саркоплазматический ретикулум представляет собой систему связанных между собой цистерн и отходящих от них в продольном направлении канальцев , расположенных между миофибриллами. Крайние цистерны ретикулума связаны с Т-трубочками. В цистернах содержатся ионы кальция, необходимые для осуществления процесса сокращения. Внутри мышечного волокна тянется масса нитей – миофибрилл, которые являются частью механизма процесса сокращения. Каждая миофибрилла состоит их протофибрилл, которые расположены параллельно друг другу и имеют белковую природу.

Различают два вида внутримышечных нитей: тонкие актиновые и толстые миозиновые . Актиновые нити состоят из двух субъединиц - скрученных в виде спирали волокон, каждое их которых образовано соединенными молекулами глобулярного белка актина. Кроме актина в состав тонких нитей входят регуляторные белки тропомиозин и тропонин . Эти белки в невозбужденной мышце препятствуют связи актина и миозина, поэтому мышца в покое находится в расслабленном состоянии.

Рис.1. Схема пространственной организации сократительных и регуляторных белков в исчерченной мышце.

Каждая миозиновая нить окружена шестью актиновыми нитями. Эти нити образуют своего рода цилиндр, внутри которого располагается миозиновая нить. Поперечные мостики миозиновой нити направлены в разные стороны, поэтому они взаимодействуют со всеми актиновыми протофибриллами. В свою очередь, каждая нить актина контактирует с тремя миозиновыми филаментами.

Внутренних органов, кожи, сосудов.

Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.

Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия. Масса мышц может достигать 50% общей массы тела.

С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам. Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис. 1).

Рис. 1. Разветвления аксона моторного нейрона на аксонные терминалы. Электронограмма

Рис. Строение скелетной мышцы человека

Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей. В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон. Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.

Функциями скелетных мышц являются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга, в том числе осуществление дыхательных движений, обеспечивающих вентиляцию легких;
  • поддержание положения и позы тела.

Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.

Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.

Рис. 2. Функции скелетных мышц

Физиологические свойства скелетных мышц

Скелетные мышцы обладают следующими физиологическими свойствами.

Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е 0 около 90 мВ) возбудимость их ниже, чем нервных волокон (Е 0 около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.

Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.

Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с.

Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.

Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.

Рис. Скелетные мышцы человека

Физические свойства скелетных мышц

Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.

Растяжимость - способность мышцы изменять длину под действием растягивающей силы.

Эластичность - способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.

- способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.

Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.

Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.

Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять. Длительное напряжение мышцы приводит к ее утомлению. Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.

Вспомогательные свойства скелетной мускулатуры

Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Это свойство очень важно для осуществления нормальных функций скелетных мышц.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу, т.е. максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.

Утомление мышц. Мышцы не могут работать беспрерывно. Длительная работа приводит к снижению их работоспособности. Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы. Принято различать два вида утомления мышц: ложное и истинное. При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом. В синапсе истощаются резервы медиаторов. При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения. Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы. Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества. Таким образом, мышца вновь приобретает способность сокращаться и производить работу.

Одиночное сокращение

Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича. Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.

Рис. 3. Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.

Тетанус мышцы

В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса. Различают два вида тетануса: зубчатый и гладкий (рис. 4).

Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый - в фазу расслабления.

Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения. Академик Н.Е. Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы. При этом развивается тетанус максимальной величины (оптимальный).

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы. Величина тетануса при этом будет минимальной (пессимальной).

Рис. 4. Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б- зубчатый тетанус; в — гладкий тетанус

Режимы мышечных сокращений

Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.

При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз). В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.

При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается. Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.

Сокращаются по аналогичным механизмам.

В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, т.е. происходит одновременное изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.

Скелетные мышцы - активная часть опорно-двигатель­ного аппарата, включающего также кости, связки, сухожилия и их сочленения. С функциональной точки зрения к двигатель­ному аппарату можно отнести и мотонейроны, вызывающие возбуждение мышечных волокон. Аксон мотонейрона при вхо­де в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мы­шечном волокне.

Мотонейрон вместе с иннервируемыми им мышечными во­локнами называют нейромоторной (или двигательной) едини­цей (ДЕ). В глазных мышцах одна двигательная единица со­держит 13-20 мышечных волокон, в мышцах туловища - со 1 тни волокон, в камбаловидной мышце - 1500-2500 волокон. Мышечные волокна одной ДЕ имеют одинаковые морфофунк- циональные свойства.

Функциями скелетных мышц являются: 1) передвижение тела в пространстве; 2) перемещение частей тела относитель­но друг друга, втом числе осуществление дыхательных движе­ний, обеспечивающих вентиляцию легких; 3) поддержание по­ложения и позы тела. Кроме того, поперечно-полосатые мыш­цы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых пита­тельных веществ.

Физиологические свойства скелетных мышц выделяют:

1) возбудимость. Из-за высокой поляризации мембран поперечно-полосатых мышечных волокон (90 мВ) возбуди­мость их ниже, чем у нервных волокон. Амплитуда потенциала действия у них (130 мВ) больше, чем удругих возбудимых кле­ток. Это позволяет на практике достаточно легко регистриро­вать биоэлектрическую активность скелетных мышц. Дли­тельность потенциала действия составляет 3-5 мс. Этим определяется короткий период абсолютной рефрактерности мышечных волокон;

          проводимость. Скорость проведения возбуждения вдоль мембраны мышечного волокна составляет 3-5 м/с;

          сократимость. Представляет специфическое свойство мышечных волокон изменять свою длину и напряжение при развитии возбуждения.

Скелетные мышцы обладают также эластичностью и вязкостью.

Режимы и виды мышечных сокращений. Изотониче­ский режим - мышца укорачивается при отсутствии возрас­тания ее напряжения. Такое сокращение возможно только для изолированной (удаленной из организма) мышцы.

Изометрический режим - напряжение мышцы возрас­тает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим мышца укорачивается и возрастает ее напряжение. Такое сокращение чаще всего на­блюдается при осуществлении трудовой деятельности челове­ка. Вместо термина "ауксотонический режим" часто применя­ется название концентрический режим.

Выделяют два вида мышечных сокращений: одиночное и те- таническое.

Одиночное мышечное сокращение проявляется в резуль­тате развития одиночной волны возбуждения в мышечных во­локнах. Этого можно достичь при воздействии на мышцу очень коротким (около 1 мс) стимулом. В развитии одиночного мы­шечного сокращения выделяют латентный период, фазу уко­рочения и фазу расслабления. Сокращение мышцы начинает проявляться через 10 мс от начала воздействия раздражителя. Этот временной интервал называют латентным периодом (рис.5.1). Затем последует развитие укорочения (длитель­ность около 50 мс) и расслабления (50-60 мс). Считается, что на весь цикл одиночного мышечного сокращения затрачивает­ся в среднем 0,1 с. Но следует иметь в виду, что длительность одиночного сокращения у разных мышц может сильно варьи­ровать. Она также зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления за­медляется при развитии утомления мышцы. К быстрым мыш­цам, имеющим короткий период одиночного сокращения, от­носятся мышцы языка и смыкающие веко.

Рис. 5.1. Временные соотношения разных проявлений возбуждения волокна скелетной мышцы: а - соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокраще­ния: / - латентный период; 2 - укорочение; 3 - расслабление; б - соотношение потенциала действия, сокращения и уровня возбудимости

Под влиянием одиночного раздражителя вначале возникает потенциал действия и лишь затем начинает развиваться пери­од укорочения. Оно продолжается и после окончания реполя­ризации. Восстановление исходной поляризации сарколеммы свидетельствует и о восстановлении возбудимости. Следова­тельно, на фоне развивающегося сокращения в мышечных во­локнах можно вызвать новые волны возбуждения, сократи­тельный эффект от которых будет суммироваться.

Тетаническим сокращением или тетанусом называют сокращение мышцы, появляющееся в результате возникнове­ния в моторных единицах многочисленных волн возбуждения, сократительный эффект от которых суммируется по амплитуде и времени.

Различают зубчатый и гладкий тетанус. Для получения зуб­чатого тетануса надо стимулировать мышцу с такой частотой, чтобы каждое последующее воздействие наносилось после фа­зы укорочения, но до момента окончания расслабления. Гладкий тетанус получается при более частых раздражениях, когда по­следующие воздействия наносятся во время развития укороче­ния мышцы. Например, если фаза укорочения у мышцы состав­ляет 50 мс, а фаза расслабления - 60 мс, то для получения зуб­чатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого - с частотой не менее 20 Гц.

Несмотря

Амплитуда сокращений

расслабилась

Пессимум

на длящееся раздражение, мышца

30 Гц

1 Гц 7 Гц

200 Гц

50 Гц

Частота раздражения

Рис. 5.2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

Для демонстрации различных видов тетануса обычно ис­пользуют регистрацию сокращений изолированной икронож­ной мышцы лягушки на кимографе. Пример такой кимограм- мы представлен на рис. 5.2. Амплитуда одиночного сокраще­ния минимальна, увеличивается при зубчатом тетанусе и ста­новится максимальной - при гладком. Одной из причин такого возрастания амплитуды является то, что при возникновении частых волн возбуждения в саркоплазме мышечных волокон накапливается Са 2+ стимулирующий взаимодействие сокра­тительных белков.

При постепенном увеличении частоты раздражения нарас­тание силы и амплитуды сокращения мышцы идет лишь до не­которого предела - оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, назы­вают оптимальной. Дальнейшее увеличение частоты раздра­жения сопровождается уменьшением амплитуды и силы со­кращения. Это явление называют пессимумом ответной ре­акции, а частоты раздражения, превышающие оптимальную величину, - пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

При оценке функциональной активности мышц говорят об их тонусе и фазических сокращениях. Тонусом мышцы называ­ют состояние длительного непрерывного напряжения. При этом видимое укорочение мышцы может отсутствовать из-за того, что возбуждение возникает не во всех, а лишь в некоторых мо­торных единицах мышцы и они возбуждаются не синхронно. Фазическим сокращением мышцы называют кратковремен­ное укорочение мышцы, сменяющееся ее расслаблением.

Структурно -функциональная характеристика мышечно­го волокна. Структурной и функциональной единицей скелет­ной мышцы является мышечное волокно, представляющее со­бой вытянутую (длиной 0,5-40 см) многоядерную клетку. Тол­щина мышечных волокон составляет 10- 100 мкм. Диаметр их может увеличиваться при интенсивных тренировочных нагруз­ках, количество же мышечных волокон может нарастать лишь до 3-4-месячного возраста.

Мембрану мышечного волокна называют сарколеммой, цитоплазму - саркоплазмой. В саркоплазме располагаются ядра, многочисленные органеллы, саркоплазматический рети- кулум, в состав которого входят продольные трубочки и их утолщения - цистерны, в которых содержатся запасы Са 2+ Цистерны соседствуют с поперечными трубочками, пронизы­вающими волокно в поперечном направлении (рис. 5.3).

В саркоплазме вдоль мышечного волокна проходит около 2000 миофибрилл (толщиной около 1 мкм), которые включают нити, образованные сплетением молекул сократительных бел­ков: актина и миозина. Молекулы актина образуют тонкие нити (миофиламенты), которые лежат параллельно друг другу и про­низывают своеобразную мембрану, называемую Z-линией или полоской. Z-линии расположены перпендикулярно длинной оси миофибриллы и делят миофибриллу на участки длиной 2- 3 мкм. Эти участки называют саркомерами.

Цистерна Сарколемма

Поперечная трубочка

Саркомер

Трубочка с-п. рет^|

Jj3H сссс с_ з зззз tccc ;

; зззз сссс с

з зззз сссс с

j3333 СССС£

J3333 с с с с с_

J3333 сс с с с_

Саркомер сокращен

3 3333 сссс с

Саркомер расслаблен

Рис. 5.3. Строение саркомера мышечного волокна: Z-линии - ограничивают саркомер,/! - анизотропный (темный)диск, / - изотропный (светлый) диск, Н - зона (менее темная)

Саркомер является сократительной единицей миофибрил- лы- В центре саркомера строго упорядоченно друг над другом лежат толстые нити, сформированные молекулами миозина, flo краям саркомера аналогичным образом расположены тон­кие нити актина. Концы актиновых нитей заходят между кон­цами миозиновых нитей.

Центральная часть саркомера (ширина 1,6 мкм), в которой лежат мио- зиновые нити, под микроскопом выглядит темной. Этот темный участок прослеживается поперек всего мышечного волокна, так как саркомеры соседних миофибрилл располагаются строго симметрично друг над дру­гом. Темные участки саркомеров получили название А-дисков от слова "анизотропный" Эти участки обладают двойным лучепреломлением в поляризованном свете. Зоны по краям А-диска, где нити актина и миози­на перекрываются, кажутся темнее, чем в центре, где находятся только миозиновые нити. Этот центральный участок называют полоской Н.

Участки миофибриллы, в которых располагаются только актиновые нити, не обладают двойным лучепреломлением, они изотропны. Отсюда их название - I-диски. В центре I-диска проходит узкая темная линия, образованная Z-мембраной. Эта мембрана удерживает в упорядоченном состоянии актиновые нити двух соседних саркомеров.

В состав актиновой нити кроме молекул актина входят так­же белки тропомиозин и тропонин, влияющие на взаимодей­ствие нитей актина и миозина. В молекуле миозина выделяют участки, которые называют головкой, шейкой и хвостом. В каждой такой молекуле имеется один хвост и по две головки с шейками. На каждой головке имеется химический центр, ко­торый может присоединять АТФ и участок, позволяющий свя­зываться с актиновой нитью.

Молекулы миозина при формировании миозиновой нити сплетаются своими длинными хвостами, располагающимися в центре этой нити, а головки находятся ближе к ее концам (рис. 5.4). Шейка и головка образуют выступ, торчащий из мио­зиновых нитей. Эти выступы называют поперечными мостика­ми. Они подвижны, и благодаря таким мостикам миозиновые нити могут установить связь с актиновыми.

Когда к головке молекулы миозина присоединяется АТФ, то мостик на короткое время располагается под тупым углом относительно хвоста. В следующий момент происходит частич­ное расщепление АТФ и за счет этого головка приподнимает­ся, переходит в энергизированное положение, при котором она может связываться с актиновой нитью.

Молекулы актина образуют двойную спираль Тролонин

Центр связи с АТФ

Участок тонкой нити (вдоль цепочек актина располагаются молекулы тропомиозина, тролонин в узлах спирали)

Шейка

Хвост

Тропомиоэин т i

Молекула миозина при большом увеличении

Участок толстой нити (видны головки молекул миозина)

Нить актина

Головка

+Са 2+

Са 2+ "*Са 2+

АДФ- Ф

Са 2+ N

Расслабление

Цикл движений головки миозина при сокращении мышцы

миозина 0 +АТФ

Рис. 5.4. Структура нитей актина и миозина, движение головок миозина при сокращении и расслаблении мышцы. Объяснение в тексте: 1-4 - этапы цикла

Механизм сокращения мышечного волокна. Возбужде­ние волокна скелетной мышцы в условиях физиологической нормы вызывается только импульсами, приходящими от мото­нейронов. Нервный импульс активирует нервно-мышечный синапс, вызывает возникновение ПК.П, а потенциал концевой пластинки обеспечивает генерацию потенциала действия на сарколемме.

Потенциал действия распространяется как вдоль поверх­ностной мембраны мышечного волокна, так и вглубь по попе­речным трубочкам. При этом происходит деполяризация цис­терн саркоплазматического ретикулума и открытие Са 2+ -ка­налов. Поскольку в саркоплазме концентрация Са 2+ состав­ляет 1(Г 7 -1(Г б М, а в цистернах она приблизительно в 10 ООО раз большая, то при открытии Са 2+ -каналов кальций по градиенту концентрации выходит из цистерн в саркоплазму, диффундирует к миофиламентам и запускает процессы, обес­печивающие сокращение. Таким образом, выход ионов Са 2+

в саркоплазму является фактором, сопрягающим электриче­ские и механические явления в мышечном волокне. Ионы Са 2+ связываются с тропонином и это, при участии тропомио- зина, приводит к открытию (разблокировке) участков актино­вой нити, которые могут связываться с миозином. После этого энергизированные головки миозина образуют мостики с акти­ном, происходит окончательное расщепление АТФ, ранее за­хваченных и удерживаемых головками миозина. Получаемая от расщепления АТФ энергия идет на поворот головок миози­на в направлении к центру саркомера. При таком повороте головки миозина тянут за собой актиновые нити, продвигая их между миозиновыми. За одно грёбковое движение головка может продвинуть актиновую нить на-1 % от длины саркомера. Для максимального сокращения нужны повторные гребковые движения головок. Это имеет место при достаточной концен­трации АТФ и Са 2+ в саркоплазме. Для повторного движения головки миозина необходимо, чтобы к ней присоединилась новая молекула АТФ. Подсоединение АТФ вызывает разрыв связи головки миозина с актином и она на мгновение занимает исходное положение, из которого может переходить к взаимо­действию с новым участком актиновой нити и делать новое гребковое движение.

Такую теорию механизма мышечного сокращения назвали теорией "скользящих нитей"

Для расслабления мышечного волокна необходимо, чтобы концентрация ионов Са 2+ в саркоплазме стала менее Ю -7 М/л. Это происходит за счет функционирования кальциевого насо­са, который перегоняет Са 2+ из саркоплазмы в ретикулум. Кроме того, для расслабления мышцы необходимо, чтобы бы­ли разорваны мостики между головками миозина и актином. Такой разрыв происходит при наличии в саркоплазме молекул АТФ и связывания их с головками миозина. После отсоедине­ния головок эластические силы растягивают саркомер и пере­мещают нити актина в исходное положение. Эластические си­лы формируются за счет: 1) эластической тяги спиралевидных клеточных белков, входящих в структуру саркомера; 2) элас­тических свойств мембран саркоплазматического ретикулума и сарколеммы; 3) эластичности соединительной ткани мышцы, сухожилий и действия сил гравитации.

Сила мышц. Силу мышцы определяют по максимальной Величине груза, который она может поднять, либо по макси­мальной силе (напряжению), которую она может развить в условиях изометрического сокращения.

Одиночное мышечное волокно способно развить напряже­ние 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одно­временно, то могли бы создать напряжение 20-30 т.

Сила мышц зависит от ряда морфофункциональных, фи­зиологических и физических факторов.

    Сила мышц возрастает с увеличением площади их гео­метрического и физиологического поперечного сечения. Для определения физиологического поперечного сечения мышцы находят сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно к ходу каждого мышеч­ного волокна.

В мышце с параллельным ходом волокон (портняжная) геометрическое и физиологическое поперечные сечения рав­ны. В мышцах с косым ходом волокон (межреберные) физио­логическое сечение больше геометрического и это способ­ствует увеличению силы мышц. Еще больше возрастает фи­зиологическое сечение и сила у мышц с перистым расположе­нием (большинство мышц тела) мышечных волокон.

Чтобы иметь возможность сопоставить силу мышечных во­локон в мышцах с различным гистологическим строением, ввели понятие абсолютной силы мышцы.

Абсолютная сила мышцы - максимальная сила, развива­емая мышцей, в перерасчете на 1 см 2 физиологического попе­речного сечения. Абсолютная сила бицепса - 11,9 кг/см 2 , трехглавой мышцы плеча - 16,8 кг/см 2 , икроножной 5,9 кг/см 2 , гладкой - 1 кг/см 2

    Сила мышцы зависит от процентного соотношения раз­личных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у людей неодинаково.

Выделяют следующие типы двигательных единиц: а) мед­ленные, неутомляемые (имеют красный цвет) - обладают ма­лой силой, но могут быть длительно в состоянии тонического сокращения без признаков утомления; б) быстрые, легко- утомляемые (имеют белый цвет) - их волокна обладают боль­шой силой сокращения; в) быстрые, устойчивые к утомлению - имеют относительно большую силу сокращения и в них мед­ленно развивается утомление.

У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено ге­нетически и может значительно различаться. Так, в четырех­главой мышце бедра человека относительное содержание мед- денных волокон может варьировать от 40 до 98%. Чем боль­ший процент медленных волокон в мышцах человека, тем бо­лее они приспособлены к длительной, но небольшой по мощности работе. Люди с высоким содержанием быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

    Сила мышцы увеличивается при умеренном ее растяже­нии. Это происходит из-за того, что при умеренном растяже­нии саркомера (до 2,2 мкм) увеличивается количество мости­ков, которые могут образоваться между актином и миозином. При растяжении мышцы в ней также развивается эластиче­ская тяга, направленная на укорочение. Эта тяга суммируется с силой, развиваемой движением головок миозина.

    Сила мышц регулируется нервной системой путем изме­нения частоты импульсаций, посылаемых к мышце, синхрони­зации возбуждения большого числа моторных единиц, выбора типов моторных единиц. Сила сокращений увеличивается: а) при возрастании количества возбуждаемых моторных еди­ниц, вовлекаемых в ответную реакцию; б) при увеличении час­тоты волн возбуждения в каждом из активируемых волокон; в) при синхронизации волн возбуждения в мышечных волок­нах; г) при активации сильных (белых) моторных единиц.

Сначала (при необходимости развития небольшого усилия) активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. А если надо развить силу более 20-25% от максимальной, то в сокращение вовле­каются быстрые легкоутомляемые моторные единицы.

При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, приходящих к мышечным волокнам.

При слабых сокращениях частота импульсаций в аксонах мотонейро­нов составляет 5-10 имп/с, а при большой силе сокращения может до­ходить до 50 имп/с.

В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, и это связано с увеличением количества миофибрилл. Увеличение числа во­локон незначительно.

При тренировке мышцу взрослых нарастание их силы свя­зано с увеличением числа миофибрилл, повышение же вынос­ливости обусловлено увеличением числа митохондрий и ин­тенсивности синтеза АТФ за счет аэробных процессов.

Существует взаимосвязь силы и скорости укорочения. Ско­рость сокращения мышцы тем выше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров) и зави­сит от нагрузки на мышцу. При увеличении нагрузки скорость сокращения уменьшается. Тяжелый груз можно поднять толь­ко при медленном движении. Максимальная скорость сокра­щения, достигаемая при сокращении мышц человека, около 8 м/с.

Сила сокращения мышцы снижается при развитии утом­ления.

Утомление и его физиологические основы. Утомлением называют временное понижение работоспособности, обуслов­ленное предыдущей работой и исчезающее после периода отдыха.

Утомление проявляется снижением мышечной силы, ско­рости и точности движений, изменением показателей работы кардиореспираторной системы и вегетативных регуляций, ухудшением показателей функций центральной нервной сис­темы. О последнем свидетельствует снижение скорости про­стейших психических реакций, ослабление внимания, памяти, ухудшение показателей мышления, возрастание количества ошибочных действий.

Субъективно утомление может проявляться ощущением усталости, появлением боли в мышцах, сердцебиением, симп­томами одышки, желанием снизить нагрузку или прекратить работу. Симптомы усталости могут различаться в зависимости от вида работы, ее интенсивности и степени утомления. Если утомление вызвано умственной работой, то, как правило, бо­лее выражены симптомы снижения функциональных возмож­ностей психической деятельности. При очень тяжелой мышеч­ной работе на первый план могут выступать симптомы нару­шений на уровне нервно-мышечного аппарата.

Утомление, развивающееся в условиях обычной трудовой деятельности как при мышечной, так и при умственной работе, имеет во многом сходные механизмы развития. В обоих случа­ях процессы утомления раньше всего развиваются в нервных центрах. Одним из показателей этого является снижение ум­ственной работоспособности при физическом утомлении, а при умственном утомлении - снижение эффективности мы­шечной деятельности.

Отдыхом называют состояние покоя или выполнение но­вой деятельности, при которых устраняется утомление и вос­станавливается работоспособность. И.М. Сеченов показал, что восстановление работоспособности происходит быстрее, если при отдыхе после утомления одной группы мышц(напри- мер, левой руки), выполнять работу другой группой мышц (правой рукой). Это явление он назвал "активным отдыхом"

Восстановлением называют процессы, обеспечивающие ликвидацию дефицита запасов энергетических и пластических веществ, воспроизведение израсходованных или поврежден­ных при работе структур, устранение избытка метаболитов и отклонений показателей гомеостаза от оптимального уровня.

Длительность периода, необходимого для восстановления организма, зависит от интенсивности и длительности работы. Чем больше интенсивность труда, тем через более короткое время необходимо делать периоды отдыха.

Различные показатели физиологических и биохимических процессов восстанавливаются через разное время от момента окончания физической нагрузки. Одним из важных тестов ско­рости восстановления является определение времени, в тече­ние которого частота сердечных сокращений возвращается к уровню, характерному для периода покоя. Время восстановле­ния частоты сердечных сокращений после теста с умеренной физической нагрузкой у здорового человека не должно превы­шать 5 мин.

При очень интенсивной физической нагрузке явления утомления развиваются не только в центральной нервной сис­теме, но и в нервно-мышечных синапсах, а также мышцах. В системе нервно-мышечного препарата наименьшей утомля­емостью обладают нервные волокна, наибольшей - нервно- мышечный синапс, промежуточное положение занимает мыш- Ца. Нервные волокна часами могут проводить высокую частоту потенциалов действия без признаков утомления. При частой Же активации синапса эффективность передачи возбуждения сначала уменьшается, а затем наступает блокада его проведе­ния. Это происходит из-за снижения запаса медиатора и АТФ в пресинаптической терминали, снижения чувствительности постсинаптической мембраны к ацетилхолину.

Был предложен ряд теорий механизма развития утомления в очень интенсивно работающей мышце: а) теория "истоще­ния" - израсходование запасов АТФ и источников ее образо­вания (креатинфосфата, гликогена, жирных кислот), б)теория "удушения" - на первое место выдвигается недостаток до­ставки кислорода в волокна работающей мышцы; в) теория "засорения", объясняющая утомление накоплением в мышце молочной кислоты и токсичных продуктов обмена веществ. В настоящее время считается, что все эти явления имеют мес­то при очень интенсивной работе мышцы.

Установлено, что максимальная физическая работа до раз­вития утомления выполняется при средней тяжести и темпе труда (правило средних нагрузок). В профилактике утомления важны также: правильное соотношение периодов труда и от­дыха, чередование умственной и физической работы, учет око­лосуточных (циркадных), годовых и индивидуальных биологи­ческих ритмов.

Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность развивает­ся при средней скорости укорочения мышц. Для мышцы руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

5.2. Гладкие мышцы

Физиологические свойства и особенности гладких мышц.

Гладкие мышцы являются составной частью некоторых внут­ренних органов и участвуют в обеспечении функций, выполня­емых этими органами. В частности, регулируют проходимость бронхов для воздуха, кровотока в различных органах и тканях, перемещения жидкостей и химуса (в желудке, кишечнике, мо­четочниках, мочевом и желчном пузырях), осуществляют из­гнание плода из матки, расширяют или сужают зрачки (за счет сокращения радиальных или циркулярных мышц радужной оболочки), изменяют положение волос и кожного рельефа. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм.

Гладкие мышцы, как и скелетные, обладают возбудимос­тью, проводимостью и сократимостью. В отличие от скелетных м ышц, имеющих эластичность, гладкие - пластичны (способ­ны длительное время сохранять приданную им за счет растя­жения длину без увеличения напряжения). Такое свойство важно для выполнения функции депонирования пищи в желуд­ке или жидкостей в желчном и мочевом пузырях.

Особенности возбудимости гладкомышечных волокон в определенной мере связаны с их низким трансмембранным по­тенциалом (Е 0 = 30-70 мВ). Многие из этих волокон облада­ют автоматией. Длительность потенциала действия у них мо­жет достигать десятков миллисекунд. Так происходит потому, что потенциал действия в этих волокнах развивается преиму­щественно за счет входа кальция в саркоплазму из межклеточ­ной жидкости через так называемые медленные Са 2+ -каналы.

Скорость проведения возбуждения в гладкомышечных клетках малая - 2-10 см/с. В отличие от скелетных мышц возбуждение в гладкой мышце может передаваться с одного волокна на другое, рядом лежащее. Такая передача происходит благодаря наличию между гладкомышечными волокнами нек­сусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками Са 2+ и други­ми молекулами. В результате этого гладкая мышца имеет свойства функционального синтиция.

Сократимость гладкомышечных волокон отличается про­должительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы имеют малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на поддержание тетанического сокраще­ния гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма всю жизнь нахо­дятся в состоянии тонического сокращения.

Условия сокращения гладкой мышцы. Важнейшей особен­ностью гладкомышечных волокон является то, что они возбужда­ются под влиянием многочисленных раздражителей. Сокраще­ние скелетной мышцы в норме инициируется только нервным им­пульсом, приходящим к нервно-мышечному синапсу. Сокраще­ние гладкой мышцы может быть вызвано как нервными Импульсами, так и биологически активными веществами (гормо­нами, многими нейромедиаторами, простагландинами, некоторы­ми метаболитами), а также воздействием физических факторов, например растяжением. Кроме того, возбуждение гладкой мыш­цы может произойти спонтанно - за счет автоматии.

Очень высокая реактивность гладких мышц, их свойство отвечать сокращением на действие разнообразных факторов создают значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на при­мерах лечения бронхиальной астмы, артериальной гиперто­нии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных волокнах располагаются менее упорядоченно, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актино- вых нитях гладкой мышцы нет белка тропонина и молекулярные центры актина всегда открыты для взаимодействия с головками миозина. Чтобы такое взаимодействие произошло, необходимо расщепление молекул АТФ и перенос фосфата на головки мио­зина. Тогда молекулы миозина сплетаются в нити и связывают­ся своими головками с миозином. Далее следует поворот голо­вок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение.

Фосфорилирование головок миозина производится с помо­щью фермента киназы легких цепей миозина, а дефосфорили- рование - фосфатазы легких цепей миозина. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкой мышцы, необходимо повышение активности киназы легких цепей миозина. Ее активность регулируется уровнем Са 2+ в саркоплазме. При возбуждении гладкомышечного волокна со­держание кальция в его саркоплазме увеличивается. Это уве­личение обусловлено поступлением Са^ + из двух источников: 1) межклеточного пространства; 2) саркоплазматического ре- тикулума (рис. 5.5). Далее ионы Са 2+ образуют комплекс с белком кальмодулином, который переводит в активное состо­яние киназу миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы: вход Са 2 в саркоплазму - акти­

вация кальмодулина (путем образования комплекса 4Са 2+ - кальмодулин) - активация киназы легких цепей миозина - фосфорилирование головок миозина - связывание головок миозина с актином и поворот головок, при котором нити акти­на втягиваются между нитями миозина.

Условия, необходимые для расслабления гладкой мышцы: 1) снижение (до 10 М/л и менее) содержания Са 2+ в сарко­плазме; 2) распад комплекса 4Са 2+ -кальмодулин, приводя­щий к снижению активности киназы легких цепей миозина - дефосфорилирование головок миозина, приводящее к разрыву связей нитей актина и миозина. После этого силы упругости вызывают относительно медленное восстановление исходной длины гладкомышечного волокна, его расслабление.

Контрольные вопросы и задания

    Клеточная мембрана

    Рис. 5.5. Схема путей поступления Са 2+ в саркоплазму гладкомышеч-

    ной клетки и удаления его из плазмы: а - механизмы, обеспечивающие поступление Са 2 + в саркоплазму и запуск со- кращеня (Са 2+ поступает из внеклеточной среды и саркоплазматического рети- кулума); б - пути удаления Са 2+ из саркоплазмы и обеспечения расслабления

    Влияние норадреналина через а-адренорецепторы

    Лигандзависимый Са 2+ -канал

    Каналы "утечки г

    Потенциал зависимый Са 2+ -канал

    Гладкомышечная клетка

    а-адрено! рецептор f Норадре- налин G

    Назовите виды мышц человека. Каковы функции скелет­ных мышц?

    Дайте характеристику физиологических свойств скелет­ных мышц.

    Каково соотношение потенциала действия, сокращения и воз­будимости мышечного волокна?

    Какие существуют режимы и виды мышечных сокращений?

    Дайте структурно-функциональную характеристику мышеч­ного волокна.

    Что такое моторные единицы? Перечислите их виды и осо­бенности.

    Каков механизм сокращения и расслабления мышечного волокна?

    Что такое сила мышц и какие факторы на нее влияют?

    Какова связь между силой сокращения, его скоростью и работой?

    Дайте определение утомления и восстановления. Каковы их физиологические основы?

    Каковыфизиологические свойства и особенности гладких мышц?

    Перечислите условия сокращения и расслабления гладкой мышцы.