Применение тригонометрических формул в жизни. Тригонометрия в архитектуре. рассматривал как отношения сторон

align=center>

Тригонометрия - микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.
Существует множество областей, в которых применяются тригонометрия и тригонометрические функции. Тригонометрия или тригонометрические функции используются в астрономии, в морской и воздушной навигации, в акустике, в оптике, в электронике, в архитектуре и в других областях.

История создания тригонометрии

История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.

Ранние века

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают , II век до н. э.).

Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя теоремы Пифагора .

Древняя Греция

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии.
Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).
Прикладные тригонометрические задачи отличаются большим разнообразием - например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).
Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей - системы небесных координат, теории картографических проекций, технологии астрономических приборов.

Средневековье

В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Они изменили некоторые концепции тригонометрии, приблизив их к современным: к примеру, они первыми ввели в использование косинус.

Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного (X-XI век) «Книга ключей науки астрономии» (995-996 годы). Целый курс тригонометрии содержал главный труд Аль-Бируни - «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15") Аль-Бируни дал таблицы тангенсов (с шагом 1°).

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу , два перевода которого были выполнены в XII веке.

Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома Ричарда Уоллингфордского (около 1320 г.). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV-XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Новое время

Развитие тригонометрии в Новое время стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях. Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник , Иоганн Кеплер , Франсуа Виет . Коперник посвятил тригонометрии две главы в своём трактате «О вращении небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические таблицы Ретика , ученика Коперника. Кеплер опубликовал труд «Оптическая часть астрономии» (1604).

Виет в первой части своего «Математического канона» (1579) поместил разнообразные таблицы, в том числе тригонометрические, а во второй части дал обстоятельное и систематическое, хотя и без доказательств, изложение плоской и сферической тригонометрии. В 1593 году Виет подготовил расширенное издание этого капитального труда.
Благодаря трудам Альбрехта Дюрера , на свет появилась синусоида.

XVIII век

Современный вид тригонометрии придал . В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному, и соответственно определил обратные функции.

Эйлер рассматривал как допустимые отрицательные углы и углы, большие 360°, что позволило определить тригонометрические функции на всей вещественной числовой прямой, а затем продолжить их на комплексную плоскость. Когда встал вопрос о распространении тригонометрических функций на тупые углы, знаки этих функций до Эйлера нередко выбирались ошибочно; многие математики считали, например, косинус и тангенс тупого угла положительными. Эйлер определил эти знаки для углов в разных координатных квадрантах, исходя из формул приведения.
Общей теорией тригонометрических рядов Эйлер не занимался и сходимость полученных рядов не исследовал, но получил несколько важных результатов. В частности, он вывел разложения целых степеней синуса и косинуса.

Применение тригонометрии

По своему правы те, кто говорит, что тригонометрия в реальной жизни не нужна. Ну, каковы ее обычные прикладные задачи? Измерять расстояние между недоступными объектами.
Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография и т.д.
Вывод: тригонометрия - огромная помощница в нашей повседневной жизни.

ТРИГОНОМЕТРИЯ –(от греч. trigwnon – треугольник и metrew – измеряю) – математическая дисциплина, изучающая зависимости между углами и сторонами треугольников и тригонометрические функции.

Термин «тригонометрия» ввел в употребление в 1595 немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц. К концу 16 в. большинство тригонометрических функций было уже известно, хотя само это понятия еще не существовало.

В тригонометрии выделяют три вида соотношений: 1) между самими тригонометрическими функциями; 2) между элементами плоского треугольника (тригонометрия на плоскости); 3) между элементами сферического треугольника, т.е. фигуры, высекаемой на сфере тремя плоскостями, проходящими через ее центр. Тригонометрия началась именно с наиболее сложной, сферической части. Она возникла прежде всего из практических нужд. Древние наблюдали за движением небесных светил. Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звездам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Наблюдения за звездным небом с незапамятных времен вели и астрологи.

Естественно, все измерения, связанные с расположением светил на небосводе, – измерения косвенные. Прямые могли быть проведены только на поверхности Земли, но и здесь далеко не всегда удавалось непосредственно определить расстояние между какими-то пунктами и тогда вновь прибегали к косвенным измерениям. Например, вычисляли высоту дерева, сравнивая длину его тени с длиной тени от какого-нибудь шеста, высота которого была известна. Аналогичным образом вычисляли и размеры острова в море. Подобные задачи сводятся к анализу треугольника, в котором одни его элементы выражают через другие. Этим и занимается тригонометрия. А поскольку звезды и планеты представлялись древним точками на небесной сфере, то сначала стала развиваться именно сферическая тригонометрия. Ее считали разделом астрономии.

А начиналось все очень давно. Первые отрывочные сведения по тригонометрии сохранились на клинописных табличках Древнего Вавилона. Астрономы Междуречья научились предсказывать положение Земли и Солнца и именно от них к нам пришла система измерения углов в градусах, минутах и секундах, потому что у вавилонян была принята шестидесятеричная система счисления .

Однако первые по-настоящему важные достижения принадлежат древнегреческим ученым. Например, 12-я и 13-я теоремы второй книги Начал Евклида (конец 4–3 в. до н. э.) выражают по существу теорему косинусов. Во 2 в. до н.э. астроном Гиппарх из Никеи (180–125 до н.э.) составил таблицу для определения соотношений между элементами треугольников. Такие таблицы нужны потому, что значения тригонометрических функций нельзя вычислить по аргументам с помощью арифметических операций. Тригонометрические функции приходилось рассчитывать заранее и хранить в виде таблиц. Гиппарх подсчитал в круге заданного радиуса длины хорд, отвечающих всем углам от 0 до 180°, кратным 7,5°. По существу, это таблица синусов. Труды Гиппарха до нас не дошли, но многие сведения из них включены в Альмагест (II в.) – знаменитое сочинение в 13 книгах греческого астронома и математика Клавдия Птолемея (ум. ок.160 н. э.). Древние греки не знали синусов, косинусов и тангенсов, вместо таблиц этих величин они употребляли таблицы, позволявшие находить хорду окружности по стягиваемой дуге. В Альмагесте автор приводит таблицу длин хорд окружности радиуса в 60 единиц, вычисленных с шагом 0,5° с точностью до 1/3600 единицы, и объясняет, как эта таблица составлялась. Труд Птолемея несколько веков служил введением в тригонометрию для астрономов.

Чтобы понять, как ученые древности составляли тригонометрические таблицы, надо познакомиться с методом Птолемея. Метод основан на теореме – произведение диагоналей вписанного в окружность четырехугольника равно сумме произведений его противоположных сторон.

Пусть ABCD – вписанный четырехугольник, АD – диаметр окружности, а точка O – ее центр (рис. 1). Если известно, как вычислять хорды, стягивающие углы DOC = a и DОВ = b, т. е. сторону СD и диагональ B, то, по теореме Пифагора , из прямоугольных треугольников АDВ и АDС можно найти АВ и АС, а потом, по теореме Птолемея, – BC = (АС ·ВD – АВ ·СD ) /АD , т.е. хорду, стягивающую угол ВОС = b – a. Некоторые хорды, например стороны квадрата, правильных шестиугольника и восьмиугольника, отвечающие углам 90, 60 и 45°, легко определить. Известна также сторона правильного пятиугольника, которая стягивает дугу в 72°. Приведенное выше правило позволяет вычислять хорды для разностей этих углов, например для 12° = 72° – 60°. Кроме того, можно находить хорды половинных углов, однако этого недостаточно, чтобы рассчитать, чему равна хорда дуги в 1°, – хотя бы потому, что все названные углы кратны 3°. Для хорды 1° Птолемей нашел оценку, показав, что она больше 2/3 хорды (3/2)° и меньше 4/3 хорды (3/4)° – двух чисел, совпадающих с достаточной для его таблиц точностью.

Если греки по углам вычисляли хорды, то индийские астрономы в сочинениях 4–5 вв. перешли к полухордам двойной дуги, т.е. в точности к линиям синуса (рис. 2). Они пользовались и линиями косинуса – вернее, не его самого, а «обращенного» синуса, получившего позднее в Европе название «синус-верзус», сейчас эта функция, равная 1 – cos a, уже не употребляется. Впоследствии тот же подход привел к определению тригонометрических функций через отношения сторон прямоугольного треугольника.

За единицу измерения отрезков MP , OP , PA принималась дуговая минута. Так, линия синуса дуги AB = 90° есть OB – радиус окружности; дуга AL , равная радиусу, содержит (округленно) 57°18" = 3438".

Дошедшие до нас индийские таблицы синусов (древнейшая составлена в 4–5 веке н.э.) не столь точны, как птолемеевы; они составлены через 3°45" (т.е. через 1/24 часть дуги квадранта).

Термины «синус» и «косинус» пришли от индийцев, не обошлось и без любопытного недоразумения. Полухорду индийцы называли «ардхаджива» (в переводе с санскрита – «половина тетивы лука»), а потом сократили это слово до «джива». Мусульманские астрономы и математики, получившие знания по тригонометрии от индийцев, восприняли его как «джиба», а затем оно превратилось в «джайб», что на арабском языке означает «выпуклость», «пазуха». Наконец, в 7 в. «джайб» буквально перевели на латынь словом «sinus», которое не имело никакого отношения к обозначаемому им понятию. Санскритское «котиджива» – синус остатка (до 90°), а на латинском – sinus complementi, т.е. синус дополнения, в 17 в. сократилось до слова «косинус». Наименования «тангенс» и «секанс» (в переводе с латинского означающие «касательная» и «секущая») введены в 1583 немецким ученым Финком.

Большой вклад в развитие тригонометрии внесли арабские ученые, например, Аль-Баттани (ок. 900 н.э.). В 10 в. багдадский ученый Мухаммед из Буджана, известный под именем Абу-ль-Вефа (940–997), присоединил к линиям синусов и косинусов линии тангенсов, котангенсов, секансов и косекансов. Он дает им те же определения, которые содержатся и в наших учебниках. Абу-ль-Вефа устанавливает и основные соотношения между этими линиями.

Итак, к концу 10 в. ученые исламского мира уже оперировали, наряду с синусом и косинусом, четырьмя другими функциями – тангенсом, котангенсом, секансом и косекансом; открыли и доказали несколько важных теорем плоской и сферической тригонометрии; использовали окружность единичного радиуса (что позволило толковать тригонометрические функции в современном смысле); придумали полярный треугольник сферического треугольника. Арабские математики составили точные таблицы, например таблицы синусов и тангенсов с шагом в 1" и точностью до 1/700 000 000. Очень важной прикладной задачей была и такая: научиться определять направление на Мекку для пяти ежедневных молитв, где бы ни находился мусульманин.

Особенно большое влияние на развитие тригонометрии оказал Трактат о полном четырехстороннике астронома Насир-эд-Дин из Туса (1201–1274), известного так же под именем ат-Туси. Это было первое в мире сочинение, в котором тригонометрия трактовалась как самостоятельная область математики.

В 12 в. был переведен с арабского языка на латинский ряд астрономических работ, по ним впервые европейцы познакомились с тригонометрией.

Трактат Насир-эд-Дина произвел большое впечатление на немецкого астронома и математика Иоганна Мюллера (1436–1476). Современники больше знали его под именем Региомонтана (так переводится на латинский название его родного города Кенигсберга, ныне – Калининграда). Региомонтан составил обширные таблицы синусов (через 1 минуту с точностью до седьмой значащей цифры). Он впервые отступил от шестидесятиричного деления радиуса и за единицу измерения линии синуса принял одну десятимиллионную часть радиуса. Таким образом, синусы выражались целыми числами, а не шестидесятиричными дробями. До введения десятичных дробей оставался только один шаг, но он потребовал более 100 лет. Труд Региомонтана О треугольниках всех родов пять книг сыграл в европейской математике ту же роль, что и сочинение Насир-эд-Дина в науке мусульманских стран.

За таблицами Региомонтана последовал ряд других, еще более подробных. Друг Коперника Ретик (1514–1576) вместе с несколькими помощниками в течение 30 лет работал над таблицами, законченными и изданными в1596 его учеником Отто. Углы шли через 10"", а радиус делился на 1 000 000 000 000 000 частей, так что синусы имели 15 верных цифр.

Дальнейшее развитие тригонометрии шло по пути накопления и систематизации формул, уточнения основных понятий, становления терминологии и обозначений. Многие европейские математики работали в области тригонометрии. Среди них такие великие ученые, как Николай Коперник (1473–1543), Тихо Браге (1546–1601) и Иоганн Кеплер (1571–1630). Франсуа Виет (1540–1603) дополнил и систематизировал различные случаи решения плоских и сферических треугольников, открыл «плоскую» теорему косинусов и формулы для тригонометрических функций от кратных углов. Исаак Ньютон (1643–1727) разложил эти функции в ряды и открыл путь для их использования в математическом анализе. Леонард Эйлер (1707–1783) ввел и само понятие функции, и принятую в наши дни символику. Величины sin x , cos x и т.д. он рассматривал как функции числа x – радианной меры соответствующего угла. Эйлер давал числу x всевозможные значения: положительные, отрицательные и даже комплексные. Он также обнаружил связь между тригонометрическими функциями и экспонентой комплексного аргумента, что позволило превратить многочисленные и зачастую весьма замысловатые тригонометрические формулы в простые следствия из правил сложения и умножения комплексных чисел. Он же ввел и обратные тригонометрические функции.

К концу 18 в. тригонометрия как наука уже сложилась. Тригонометрические функции нашли применение в математическом анализе, физике, химии, технике – везде, где приходится иметь дело с периодическими процессами и колебаниями – будь то акустика, оптика или качание маятника.

Решение любых треугольников, в конечном счете, сводится к решению прямоугольных треугольников (т.е. таких, у которых один из углов – прямой). Поскольку все прямоугольные треугольники с заданным острым углом подобны друг другу, отношения их соответственных сторон одинаковы. Например, в прямоугольном треугольнике ABC отношение двух его сторон, например, катета а к гипотенузе с , зависит от величины одного из острых углов, например А . Отношения различных пар сторон прямоугольного треугольника и называются тригонометрическими функциями его острого угла. Всего таких отношений в треугольнике шесть, и им отвечают шесть тригонометрических функций (обозначения сторон и углов треугольника на рис. 3).

Так как А + В = 90°, то

sin A = cos B = cos (90° – A ),

A = ctg B = ctg (90° – A ).

Из определений вытекает несколько равенств, связывающих тригонометрические функции одного и того же угла между собой:

С учетом теоремы Пифагора a 2 + b 2 = c 2 можно выразить все шесть функций через какую-нибудь одну. Например, синус и косинус связаны основным тригонометрическим тождеством

sin 2 A + cos 2 A = 1.

Некоторые соотношения между функциями:

Эти формулы справедливы и для тригонометрических функций любого угла, но ими надо пользоваться осторожно, поскольку правые и левые части могут иметь разные области определения.

Есть только два прямоугольных треугольника, у которых и углы «хорошие» (выражаются целым или рациональным числом градусов), и хотя бы одно из отношений сторон рационально. Это равнобедренный треугольник (с углами 45, 45 и 90°) и половина равностороннего треугольника (с углами 30, 60, 90°) – как раз те два случая, когда значения тригонометрических функций удается вычислить прямо по определению. Эти значения приведены в таблице

n 0 1 2 3 4
Угол 0 30° 45° 60° 90°
sin
cos
tg
ctg

Отношения, входящие в теорему синусов, имеют простой геометрический смысл. Если описать окружность около треугольника ABC (рис. 4) и провести диаметр BD , то по теореме о вписанном угле РBCD = РA либо, если угол тупой, 180° – А . В любом случае a = BC = BD sin A = 2 R sin A или

где R – радиус описанной окружности треугольника АВС . Это «усиленная» теорема синусов, объясняющая, почему таблицы хорд древних были, по существу, таблицами синусов.

Доказывается и теорема косинусов

с 2 = а 2 + b 2 – 2аb cos С .

позволяющая найти сторону треугольника по двум другим сторонам и углу между ними, а также углы по трем сторонам.

Есть и ряд других соотношений между элементами треугольника, например. теорема тангенсов:, где

cos (a + b) = cos a cos bsin a sin b,

cos (ab) = cos a cos b + sin a sin b.

Общее определение тригонометрических функций

Пусть точка движется с единичной скоростью по единичной окружности с центром в начале координат О против часовой стрелки (рис. 5). В момент t = 0 точка минует P 0 (1; 0). За время t точка проходит дугу длиной t и занимает положение Р t , а значит, угол, на который поворачивается луч, проведенный в эту точку из О , тоже равен t. Таким образом, мы сопоставляем каждому моменту времени, т.е. точке t действительной прямой, точку Р t единичной окружности.

Подобное отображение прямой на окружность иногда называют «намоткой». Если представить действительную ось в виде бесконечной нерастяжимой нити, приложить точку t = 0 к точке P 0 окружности и начать наматывать оба конца нити на окружность, то каждая точка t попадет как раз в точку Р t . При этом:

1) точки оси, отстоящие друг от друга на целое число длин окружностей, т, е. на 2pk (k =±1, ± 2, …), попадают в одну и ту же точку окружности;

2) точки t и –t попадают в точки, симметричные относительно Ox ;

3) при 0 Ј t Ј p угол P 0 OP t отложен в полуплоскость у і 0 и равен t (рис. 8).

Три этих условия составляют формальное определениетакогоотображения – намотки. В силу условия 3 при 0 = t Ј p координаты точки р равны (cos t , sin t ). Данное наблюдение и подсказывает определение: косинусом и синусом произвольного числа t называются соответственно абсцисса и ордината точки Р t .

Тангенс тоже можно определить через координаты. Проведем касательную к единичной окружности в точке (1; 0) (рис. 7). Она называется осью тангенсов. Точка Q t пересечения прямой OP t с осью тангенсов имеет координаты (1; sin t /cos t ), и ее ордината, по определению, равна tg t . По абсолютной величине это длина отрезка касательной, проведенной из Q t к окружности. Таким образом, само название «тангенс» вполне оправдывается. Кстати, как и секанса: на рис. 9 sec t – отрезок OQ t , являющийся, правда, не всей секущей, но ее частью. Наконец, котангенс можно определить как абсциссу точки пересечения OP t с осью котангенсов – касательной к единичной окружности в точке (0, 1): ctg t =cos t / sin t .

Теперь тригонометрические функции определены для всех чисел.

Марина Федосова

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ

«КАМЕНСКИЙ ТЕХНИКУМ СТРОИТЕЛЬСТВА И АВТОСЕРВИСА»

ИНФОРМАЦИОННО-ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ

ПО ТЕМЕ:

«Тригонометрия вокруг нас»

Выполнили:

обучающиеся ГБОУ СПО РО «КТСиА» группы № 26

Ерохин Алексей,

и группы № 23

Чухов Константин.

Руководитель:

Срыбная Юлия Владимировна,

преподаватель математики.

Каменск-Шахтинский

2015

Стр.

Введение……………………………………………..……………………...3

Ход проведённого исследования …………… …………………………..5

1. Тригонометрия в физике……………………………. ………..……...…5

2. Применение тригонометрии в искусстве и архитектуре. …….. …...… 8

3. Тригонометрия в биологии ………………………………..…… ……...10

4. Тригонометрия в медицине …………………………………………….12

Заключение……………..………………………………………………….. 14

Литература ……………..………………………………………………….. 15

Введение

Реальные процессы окружающего мира обычно связаны с большим количеством переменных и зависимостей между ними. Описать эти зависимости можно с помощью функций. Понятие «функция» сыграло и поныне играет большую роль в познании реального мира. Знание свойств функций позволяет понять суть происходящих процессов, предсказать ход их развития, управлять ими. Изучение функций является актуальным всегда.

Мир функций богат и разнообразен. В различных науках и областях человеческой деятельности возникают функциональные зависимости, которые могут касаться самых разнообразных явлений природы и окружающей среды.

В нашем информационно-исследовательском проекте «Тригонометрия вокруг нас» рассматривается практическое применение тригонометрических функций.

Тригонометрия – раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Слово тригонометрия состоит из двух греческих слов: trigwnon - треугольник и metrew - измерять и в буквальном переводе означает измерение треугольников. Как и всякая другая наука, тригонометрия возникла в результате человеческой практики в процессе решения конкретных практических задач.

Приступая к написанию данной работы, мы столкнулись с противоречием между имеющимися теоретическими знаниями по данной теме и отсутствием понимания того, где в реальной жизни можно встретиться с функциональной моделью, и как человек использует свойства тригонометрических функций в своей практической деятельности.

Объект нашего исследования – тригонометрические функции; предмет исследования - области их практического применения.

Цель : выявить связь тригонометрических функций с явлениями окружающего мира и практической деятельностью человека, показать, что данные функции находит широкое применение в жизни.

Выбрав тему исследовательской работы и определив цель, нам необходимо было решить следующие задачи :

1. Изучить литературу и ресурсы удаленного доступа по теме проекта.

2. Выяснить, какие законы природы выражаются тригонометрическими функцией.

3. Найти примеры применения тригонометрических функций в окружающем мире.

4. Проанализировать и систематизировать имеющийся материал.

5. Подготовить оформленный материал в соответствии с требованиями информационного проекта.

6. Разработать в соответствии с содержанием проекта электронную презентацию.

7. Выступить на конференции с результатами проведённой работы.

Гипотеза исследования: аппарат математики, а именно тригонометрические функции, широко используется в других науках, а также находит практическое применение.

Для решения этих задач нашей проектной деятельности мы будем использовать следующие методы :

    теоретические: изучение литературы, ресурсов удалённого доступа по вопросу нашего проекта.

    логический анализ: метод систематизации накопленного материала.

В нашей работе мы определили следующие этапы изучения:

    Подготовительный, включающий в себя выбор темы проекта, постановку цели и задач, выбор методов изучения нашего объекта.

    Основной (информационно-поисковый), включающий в себя непосредственное изучение литературы, поиск ресурсов удалённого доступа, связанных с нашим проектом.

    Заключительный этап, включающий в себя обработку изученного материала, анализ и систематизацию его. Подведение итогов.

Ход проведённого исследования.

В проведении исследования и оформлении результатов проекта принимали участие обучающиеся групп 23 и 26.

На подготовительном этапе мы познакомились с понятиями «проблема», «исследование», «проект», выдвинули гипотезы и сформулировали цель нашего проекта. Мы начали поиск необходимой информации, изучали литературу по нашей теме и материалы ресурсов удаленного доступа.

На основном этапе , была подобрана и накоплена информация по теме, проанализированы найденные материалы. Мы выяснили основные области применения тригонометрических функций. Все данные были обобщены и систематизированы. Затем разработан целостный окончательный вариант информационного проекта, составлена презентация по теме исследования.

На заключительном этапе была проанализирована презентация работы на конкурс. На этом этапе также предполагалась деятельность по реализации всех поставленных задач, подведение итогов, т. е. оценка своей деятельность.

В осход и заход солнца, изменение фаз луны, чередование времен года, биение сердца, циклы в жизнедеятельности организма, вращение колеса, морские приливы и отливы - модели этих многообразных процессов описываются тригонометрическими функциями.

1. Тригонометрия в физике.

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис.1).

Рис.1. Механические колебательные системы.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.

На рисунке 2 приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением:

x = m cos (ωt + f 0 ).

Рис. 2. Графики координаты x(t), скорости υ (t)

и ускорения a(t) тела, совершающего

гармонические колебания.

Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом.

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ . Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ .

Если бы зрение людей обладало способностью видеть звуковые, электромагнитные и радиоволны, то мы видели бы вокруг многочисленные синусоиды всевозможных видов.

Наверняка, каждый не раз наблюдал явление, когда опущенные в воду предметы сразу же меняли свои размеры и пропорции. Интересное явление, погружаешь в воду свою руку, и она сразу же превращается в руку какого-то другого человека. Почему так происходит? Ответ на этот вопрос и подробное объяснение этого явления как всегда дает физика – наука, которая может объяснить практически все, что нас окружает в этом мире.

Итак, на самом деле, при погружении в воду предметы, конечно же, не меняют ни своих размеров, ни своих очертаний. Это просто оптический эффект, то есть мы зрительно воспринимаем этот объект по-другому. Происходит это из-за свойства светового луча. Оказывается, на скорость распространения света в огромной мере влияет, так называемая оптическая плотность среды. Чем плотнее эта оптическая среда, тем медленнее распространяется луч света.

Но и изменение скорости луча света еще не объясняет в полной мере рассматриваемого нами явления. Существует и еще один фактор. Так вот, когда световой луч проходит границу между менее плотной оптической средой, например воздухом, и более плотной оптической средой, например водой, часть светового луча не проникает внутрь новой среды, а отражается от ее поверхности. Другая же часть светового луча проникает внутрь, но, уже меняя направление.

Это явление называется преломлением света, и ученые уже давно могут не просто наблюдать, но и точно рассчитывать угол этого преломления. Оказалось, что простейшие тригонометрические формулы и знание синуса угла падения и угла преломления дают возможность узнать постоянный коэффициент преломления для перехода светового луча из одной конкретной среды в другую. Например, коэффициент преломления воздуха чрезвычайно мал и составляет 1,0002926, коэффициент преломления воды чуть больше - 1,332986, алмаз преломляет свет с коэффициентом 2,419, а кремний - 4,010.

Данное явление лежит в основе, так называемой Теории радуги. Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

,

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.

2. Применение тригонометрии в искусстве и архитектуре.

С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Рассмотрим пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы, тем самым найдем точку зрения (рис.4).

На рисунке 5 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 + sin 2 = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу



Культовые здания во всем мире были спроектированы благодаря математике, которая может считаться гением архитектуры. Некоторые известные примеры таких зданий: Детская школа Гауди в Барселоне , Небоскрёб Мэри-Экс в Лондоне, Винодельня «Бодегас Исиос» в Испании , Ресторан в Лос-Манантиалесе в Аргентине . При проектировании этих зданий не обошлось без тригонометрии.

3. Тригонометрия в биологии.

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь. Живые организмы не только улавливают свет и тепло Солнца и Луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы Луны и движение нашей планеты.

Биологические ритмы, биоритмы, - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, целых организмах и популяциях. Биоритмы подразделяют на физиологические , имеющие периоды от долей секунды до нескольких минут и экологические, по длительности совпадающие с каким либо ритмом окружающей среды. К ним относят суточные, сезонные, годовые, приливные и лунные ритмы. Основной земной ритм – суточный, обусловлен вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное и электромагнитное поле, морские приливы и отливы, под влиянием этого вращения закономерно изменяются.

Мы на семьдесят пять процентов состоим из воды, и если в момент полнолуния воды мирового океана поднимаются на 19 метров над уровнем моря и начинается прилив, то вода, находящаяся в нашем организме так же устремляется в верхние отделы нашего тела. И у людей с повышенным давлением часто наблюдаются обострения болезни в эти периоды, а натуралисты, собирающие лекарственные травы, точно знают в какую фазу луны собирать «вершки – (плоды)», а в какую – «корешки».

Вы замечали, что в определенные периоды ваша жизнь делает необъяснимые скачки? Вдруг откуда не возьмись - бьют через край эмоции. Повышается чувствительность, которая внезапно может смениться полной апатией. Творческие и бесплодные дни, счастливые и несчастные моменты, резкие скачки настроения. Подмечено, что возможности человеческого организма меняются периодически. Эти знания лежат в основе «теории трех биоритмов».

Физический биоритм – регулирует физическую активность. В течение первой половины физического цикла человек энергичен, и достигает лучших результатов в своей деятельности (вторая половина – энергичность уступает лености).

Эмоциональный ритм – в периоды его активности повышается чувствительность, улучшается настроение. Человек становится возбудимым к различным внешним катаклизмам. Если у него хорошее настроение, он строит воздушные замки, мечтает влюбиться и влюбляется. При снижении эмоционального биоритма происходит упадок душевных сил, пропадает желание, радостное настроение.

Интеллектуальный биоритм - он распоряжается памятью, способностью к обучению, логическому мышлению. В фазе активности наблюдается подъем, а во второй фазе спад творческой активности, отсутствуют удача и успех.

Теория трех ритмов.


Тригонометрия встречается и в природе. Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

При полёте птицы траектория взмаха крыльев образует синусоиду.

4. Тригонометрия в медицине.

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.

Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем - на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах.

Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Такой вывод был сделан после серии экспериментов, участникам которых предлагалось взглянуть на окружающий мир через призмы, увеличивающие этот угол.

Такое искажение приводило к тому, что подопытные носители призм воспринимали удаленные объекты как более близкие и не могли справиться с простейшими тестами. Некоторые из участников экспериментов даже наклонялись вперед, стремясь выровнять свое тело перпендикулярно неправильно представляемой поверхности земли. Однако по прошествии 20 минут они привыкли к искаженному восприятию, и все проблемы исчезли. Это обстоятельство указывает на гибкость механизма, с помощью которого мозг приспосабливает зрительную систему к меняющимся внешним условиям. Интересно заметить, что после того, как призмы были сняты, некоторое время наблюдался обратный эффект - переоценка расстояния.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

Заключение

В настоящее время тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Выводы:

    Мы выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Мы доказали , что тригонометрия тесно связана с физикой, биологией, встречается в природе, архитектуре и медицине.

    Мы думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

Литература

1. Алимов Ш.А. и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. Виленкин Н.Я. Функции в природе и техники: Кн. для внеклас. чтения IX - XX кл. – 2-е изд., испр.-М: Просвещение, 1985.

3. Глейзер Г.И. История математики в школе: IX - X кл. - М.: Просвещение, 1983.

4. Маслова Т.Н. «Справочник школьника по математике»

5. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.

6. Учеба. ru

7. Math . ru «библиотека»

    Тригонометрия в астрономии:

    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах — секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты — широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. — ок. 120 до н. э.)


    Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
    Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

    Тригонометрия в физике:

    виды колебательных явлений.

    Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

    Где х — значение изменяющейся величины, t — время, А — амплитуда колебаний, ω — циклическая частота колебаний, — полная фаза колебаний, r — начальная фаза колебаний.

    Механические колебания . Механическими колебаниями

    Тригонометрия в природе.

    Мы часто задаем вопрос

  • Одно из фундаментальных свойств
  • - это более или менее регулярные изменения характера и интенсивности биологических процессов.
  • Основной земной ритм - суточный.

Тригонометрия в биологии

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • диатоническая гамма 2:3:5

Тригонометрия в архитектуре

  • Страховая корпорация Swiss Re в Лондоне
  1. Интерпретация

Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили

Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

в которых она играет важную роль, будут расширяться.

  • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
  • Доказали
  • Думаем

Просмотр содержимого документа
«Данилова Т.В.-сценарий»

МКОУ «Ненецкая общеобразовательная средняя школа – интернат им. А.П.Пырерки»

Учебный проект

" "

Данилова Татьяна Владимировна

Учитель математики

    Обоснование актуальности проекта.

Тригонометрия - это раздел математики, изучающий тригонометрические функции. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.
Слово тригонометрия впервые появляется в 1505 году в заглавии книги немецкого математика Питискуса.
Тригонометрия – слово греческое, и в буквальном переводе означает измерение треугольников (trigonan – треугольник, metreo - измеряю).
Возникновение тригонометрии было тесно связано с землемерием, астрономией и строительным делом.…

Школьник в 14-15 лет не всегда знает, куда пойдет учиться и где будет работать.
Для некоторых профессий ее знание необходимо, т.к. позволяет измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Принципы тригонометрии, используются и в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

    Определение предмета исследования

3. Цели проекта.

    Проблемный вопрос
    1. Какие понятия тригонометрии чаще всего используются в реальной жизни?
    2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине?
    3. Как связаны архитектура, музыка и тригонометрия?

    Гипотеза

    Проверка гипотезы

Тригонометрия (от греч. trigonon – треугольник, metro – метрия) –

История тригонометрии:

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна. По звездам вычисляли местонахождение корабля в море.

Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого «синуса дополнения», т.е. синуса угла, дополняющего данный угол до 90°. «Синус дополнения» или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co -sinus .

В XVII – XIX вв. тригонометрия становится одной из глав математического анализа.

Она находит большое применение в механике, физике и технике, особенно при изучении колебательных движений и других периодических процессов.

Жан Фурье доказал, что всякое периодическое движение может быть представлено (с любой степенью точности) в виде суммы простых гармонических колебаний.

в систему математического анализа.

Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.

Тригонометрия в астрономии:

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Достижения Виета в тригонометрии
Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

Тригонометрия в физике:

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

Механические колебания . Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

Тригонометрия в природе.

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

    Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

    К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

    Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

    Биологические ритмы, биоритмы

    Основной земной ритм – суточный.

    Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

    Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    Биологические ритмы, биоритмы связаны с тригонометрией

    Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

Возникновение музыкальной гармонии

    Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

    Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

    диатоническая гамма 2:3:5

Тригонометрия в архитектуре

    Детская школа Гауди в Барселоне

    Страховая корпорация Swiss Re в Лондоне

    Феликс Кандела Ресторан в Лос-Манантиалесе

    Интерпретация

Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

в которых она играет важную роль, будут расширяться.

    Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.

    Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

7. Литература.

    Программа Maple6, реализующий изображение графиков

    «Википедия»

    Учеба.ru

    Math.ru «библиотека»

Просмотр содержимого презентации
«Данилова Т.В.»

" Тригонометрия в окружающем нас мире и жизни человека "



Цели исследования:

Связь тригонометрии с реальной жизнью.


Проблемный вопрос 1. Какие понятия тригонометрии чаще всего используются в реальной жизни? 2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине? 3. Как связаны архитектура, музыка и тригонометрия?


Гипотеза

Большинство физических явлений природы, физиологический процессов, закономерностей в музыке и искусстве можно описать с помощью тригонометрии и тригонометрических функций.


Что такое тригонометрия???

Тригонометрия (от греч. trigonon – треугольник, metro – метрия) – микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.



История тригонометрии

Истоки тригонометрии берут начало в древнем Египте, Вавилонии и долине Инда более 3000 лет назад.

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом и Птолемеем.

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна.

По звездам вычисляли местонахождение корабля в море.


Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

В отличие от греков инд ийцы стали рассматривать и употреблять в вычислениях уже не целую хорду ММ соответствующего центрального угла, а только ее половину МР, т. е. синуса - половины центрального угла.

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого « синуса дополнения » , т.е. синуса угла, дополняющего данный угол до 90 . « Синус дополнения » или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus.

Наряду с синусом индийцы ввели в тригонометрию косинус , точнее говоря, стали употреблять в своих вычислениях линию косинуса. Им были известны также соотношения cos =sin(90 - ) и sin 2 +cos 2 =r 2 , а также формулы для синуса суммы и разности двух углов.


В XVII – XIX вв. тригонометрия становится

одной из глав математического анализа.

Она находит большое применение в механике,

физике и технике, особенно при изучении

колебательных движений и других

периодических процессов.

О свойствах периодичности тригонометрических функций знал еще Виет, первые математические исследования которого относились к тригонометрии.

Доказал, что всякое периодическое

движение может быть

представлено (с любой степенью

точности) в виде суммы простых

гармонических колебаний.


Основоположник аналитической

теории

тригонометрических функций .

Леонард Эйлер

Во «Введении в анализ бесконечных» (1748 г)

трактует синус, косинус и т.д. не как

тригонометрические линии, обязательно

связанные с окружностью, а как

тригонометрические функции, которые он

рассматривал как отношения сторон

прямоугольного треугольника, как числовые

величины.

Исключил из своих формул

R – целый синус, принимая

R = 1, и упростил таким

образом записи и вычисления.

Разрабатывает учение

о тригонометрических функциях

любого аргумента.


В XIX веке продолжил

развитие теории

тригонометрических

функций.

Н.И.Лобачевский

« Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций… Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».


Стадии развития тригонометрии:

  • Тригонометрия была вызвана к жизни необходимостью производить измерения углов.
  • Первыми шагами тригонометрии было установление связей между величиной угла и отношением специально построенных отрезков прямых. Результат - возможность решать плоские треугольники.
  • Необходимость табулировать значения вводимых тригонометрических функций.
  • Тригонометрические функции превращались в самостоятельные объекты исследований.
  • В XVIII в. тригонометрические функции были включены

в систему математического анализа.


Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.


Тригонометрия в астрономии

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Значительных высот достигла тригонометрия и у индийских средневековых астрономов.

Главным достижением индийских астрономов стала замена хорд

синусами, что позволило вводить различные функции, связанные

со сторонами и углами прямоугольного треугольника.

Таким образом, в Индии было положено начало тригонометрии

как учению о тригонометрических величинах.


Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)

Гиппарх



Тригонометрия в физике

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений, например:

Механические колебания

Гармонические колебания


Гармонические колебания

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

или

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.


Механические колебания

Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.


Математический маятник

На рисунке изображены колебания маятника, он движется по кривой, называемой косинусом.


Траектория пули и проекции векторов на оси X и Y

Из рисунка видно, что проекции векторов на оси Х и У соответственно равны

υ x = υ o cos α

υ y = υ o sin α


Тригонометрия в природе

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».


Оптические иллюзии

естественные

искусственные

смешанные


Теория радуги

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

sin α / sin β = n 1 / n 2

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.


Северное сияние

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.


  • Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.
  • К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.
  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

  • Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.
  • Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.
  • Основной земной ритм – суточный.
  • Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • Биологические ритмы, биоритмы связаны с тригонометрией.

  • Модель биоритмов можно построить с помощью графиков тригонометрических функций.
  • Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

Тригонометрия в биологии

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.



Возникновение музыкальной гармонии

  • Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.
  • Частоты, соответствующие

одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

  • диатоническая гамма 2:3:5

У музыки есть своя геометрия

Тетраэдр из различных типов аккордов четырех звуков:

синий – малые интервалы;

более теплые тона - более «разряженные» звуки аккорда; красная сфера- наиболее гармоничный аккорд с равными интервалами между нотами.


cos 2 С + sin 2 С = 1

АС – расстояние от верха статуи до глаз человека,

АН – высота статуи,

sin С - синус угла падения взгляда.


Тригонометрия в архитектуре

Детская школа Гауди в Барселоне


Страховая корпорация Swiss Re в Лондоне

y = f (λ)cos θ

z = f (λ)sin θ


Феликс Кандела Ресторан в Лос-Манантиалесе


  • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
  • Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.
  • Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

Тригонометрия прошла длинный путь развития. И теперь, мы можем с уверенностью сказать, что тригонометрия не зависит от других наук, а другие науки зависят от тригонометрии.


  • Маслова Т.Н. «Справочник школьника по математике»
  • Программа Maple6, реализующий изображение графиков
  • «Википедия»
  • Учеба.ru
  • Math.ru «библиотека»
  • История математики с Древнейших времен до начала XIX столетия в 3-х томах// под ред. А. П. Юшкевича. Москва, 1970г. – том 1-3 Э. Т. Бэлл Творцы математики.
  • Предшественники современной математики// под ред. С. Н. Ниро. Москва,1983г. А. Н. Тихонов, Д. П. Костомаров.
  • Рассказы о прикладной математике//Москва, 1979г. А. В. Волошинов. Математика и искусство// Москва, 1992г. Газета Математика. Приложение к газете от 1.09.98г.

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №10

с углубленным изучением отдельных предметов

Проект выполнил:

Павлов Роман

ученик 10б класса

Руководитель:

учитель математики

Болдырева Н. А

г. Елец, 2012

1.Введение.

3. Мир тригонометрии.

· Тригонометрия в физике.

· Тригонометрия в планиметрии.

· Тригонометрия в искусстве и архитектуре.

· Тригонометрия в медицине и биологии.

3.2 Графические представления о превращении «мало интересных» тригонометрических функций в оригинальные кривые (с помощью компьютерной программы «Функции и графики»).

· Кривые в полярных координатах (Розетки).

· Кривые в декартовых координатах (Кривые Лиссажу).

· Математические орнаменты.

4. Заключение.

5. Список литературы.

Цель проекта - развитие интереса к изучению темы «Тригонометрия» в курсе алгебры и начала анализа через призму прикладного значения изучаемого материала; расширение графических представлений, содержащих тригонометрические функции; применение тригонометрии в таких науках, как физика, биология. Не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.

Объект исследования - тригонометрия

Предмет исследования - прикладная направленность тригонометрии; графики некоторых функций, с использованием тригонометрических формул.

Задачи исследования:

1.Рассмотреть историю возникновения и развития тригонометрии.

2.Показать на конкретных примерах практические приложения тригонометрии в различных науках..

3.Раскрыть на конкретных примерах возможности использования тригонометрических функций, позволяющие «мало интересные» функции превращать в функции, графики которых имеют весьма оригинальный вид.

Гипотеза - предположения : Связь тригонометрии с окружающим миром, значение тригонометрии в решении многих практических задач, графические возможности тригонометрических функций позволяют «материализовать» знания школьников. Это позволяет лучше понять жизненную необходимость знаний, приобретаемых при изучении тригонометрии, повышает интерес к изучению данной темы.

Методы исследования - анализ математической литературы по данной теме; отбор конкретных задач прикладного характера по данной теме; компьютерное моделирование на основе компьютерной программы. Открытая математика «Функции и графики» (Физикон).

1. Введение

« Одно осталось ясно, что мир устроен

грозно и прекрасно».

Н. Рубцов

Тригонометрия - это раздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре. Значительную роль в развитии навыков применения на практике теоретических знаний, полученных при изучении математики, играют задачи с практическим содержанием. Каждого изучающего математику, интересует как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

2.История развития тригонометрии.

Слово тригонометрия составилось из двух греческих слов: τρίγονον (тригонон-треугольник) и и μετρειν (метрейн - измерять) в буквальном переводе означает измерение треугольников .

Именно эта задача - измерение треугольников или, как принято теперь говорить, решение треугольников, т. е. определение всех сторон и углов треугольника по трем его известным элементам (стороне и двум углам, двум сторонам и углу или трем сторонам)- с древнейших времен составляла основу практических приложений тригонометрии.

Как и всякая другая наука, тригонометрия выросла из человеческой практики, в процессе решения конкретных практических задач. Первые этапы развития тригонометрии тесно связаны с развитием астрономии . Большое влияние на развитие астрономии и тесно связанной с ней тригонометрии оказали потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил. Значительную роль в развитии тригонометрии сыграла потребность в составлении географических карт и тесно связанная с этим необходимость правильного определения больших расстояний на земной поверхности.

Основополагающее значение для развития тригонометрии в эпоху ее зарождения имели работы древнегреческого астронома Гиппарха (середина II века до н. э.). Тригонометрия как наука, в современном смысле этого слова не было не только у Гиппарха, но и у других ученых древности, так как они еще не имели понятия о функциях углов и даже не ставили в общем виде вопроса о зависимости между углами и сторонами треугольника. Но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. При этом основным средством получения нужных результатов было умение вычислять длины круговых хорд на основании известных соотношений между сторонами правильных трех-, четырех-, пяти - и десятиугольника и радиусом описанного круга.

Гиппарх составил первые таблицы хорд, т. е. таблицы, выражающие длину хорды для различных центральных углов в круге постоянного радиуса. Это были, по существу, таблицы двойных синусов половины центрального угла. Впрочем, оригинальные таблицы Гиппарха(как и почти все им написанное) до нас не дошли, и мы можем составить себе о них представление главным образом по сочинению « Великое построение» или (в арабском переводе) « Альмагест» знаменитого астронома Клавдия Птолемея , жившего в середине II века н. э.

Птолемей делил окружность на 360 градусов, а диаметр - на 120 частей. Он считал радиус равным 60 частям(60¢¢). Каждую из частей он делил на 60¢, каждую минуту на 60¢¢,секунду на 60 терций (60¢¢¢) и т. д., применяя указанное деление, Птолемей выражал сторону правильного вписанного шестиугольника или хорду, стягивающую дугу в 60° в виде 60 частей радиуса(60ч), а сторону вписанного квадрата или хорду в 90° приравнивал числу 84ч51¢10².Хорду в 120°- сторону вписанного равностороннего треугольника - он выражал числом 103ч55¢23² и т. д. Для прямоугольного треугольника с гипотенузой, равной диаметру круга, он записывал на основании теоремы Пифагора: (хорда a)2+(хорда|180-a|)2=(диаметру)2, что соответствует современной формуле sin2a+cos2a=1.

«Альмагест» содержит таблицу хорд через полградуса от 0° до 180°, которая с нашей современной точки зрения представляет таблицу синусов для углов от 0° до 90° через каждые четверть градуса.

В основе всех тригонометрических вычислений у греков лежала известная еще Гиппарху теорема Птолемея: «прямоугольник, построенный на диагоналях вписанного в круг четырехугольника, равен сумме прямоугольников, построенных на противолежащих сторонах» (т. е. произведение диагоналей равно сумме произведений противоположных сторон). Пользуясь этой теоремой, греки умели (с помощью теоремы Пифагора) по хордам двух углов вычислить хорду суммы (или хорду разности) этих углов или хорду половины данного угла, т. е. умели получать результаты, которые мы получаем теперь по формулам синуса суммы(или разности) двух углов или половины угла.

Новые шаги в развитии тригонометрии связаны с развитием математической культуры народов Индии, Средней Азии и Европы (V- XII) .

Важный шаг вперед в период с V по XII век был сделан индусами, которые в отличие от греков стали рассматривать и употреблять в вычислениях уже не целую хорду ММ¢(см. чертеж) соответствующего центрального угла, а только ее половину МР, т. е. то, что мы теперь называем линией синуса a- половины центрального угла.

Наряду с синусом индусы ввели в тригонометрию косинус, точнее говоря, стали употреблять в своих вычислениях линию косинуса. (Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в. из так называемого « синуса дополнения», т. е. синуса угла, дополняющего данный угол до 90°. «Синус дополнения» или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus).

Им были известны также соотношения cosa=sin(90°-a) и sin2a+cos2a=r2 , а также формулы для синуса суммы и разности двух углов.

Следующий этап в развитии тригонометрии связан со странами

Средней Азии, Ближнего Востока, Закавказья(VII- XV в.)

Развиваясь в тесной связи с астрономией и географией,- среднеазиатская математика имела ярко выраженный « вычислительный характер» и была направлена на разрешение прикладных задач измерительной геометрии и тригонометрии, причем тригонометрия сформировалась в особую математическую дисциплину в значительной мере именно в трудах среднеазиатских ученых. Из числа сделанных ими важнейших успехов следует в первую очередь отметить введение всех шести тригонометрических линий: синуса, косинуса, тангенса, котангенса, секанса и косеканса, из которых лишь первые две были известны грекам и индусам.

https://pandia.ru/text/78/114/images/image004_97.gif" width="41" height="44"> =a×ctgj шеста определенной длины (а=12) для j=1°,2°,3°……

Абу-ль-Вафа из Хоросана, живший в Х веке (940-998) , составил аналогичную «таблицу тангенсов», т. е. вычислил длину тени b=a×=a×tgj, отбрасываемой горизонтальным шестом определенной длины (а=60) на вертикальную стену (см. чертеж).

Следует отметить, что сами термины « тангенс» (в буквальном переводе - «касающийся») и «котангенс» произошли из латинского языка и появились в Европе значительно позднее (XVI-XVIIвв.). Среднеазиатские же ученые называли соответствующие линии «тенями»: котангенс-«первой тенью», тангенс - «второй тенью».

Абу-ль-Вафа дал совершенно точное геометрическое определение линии тангенса в тригонометрическом круге и присоединил к линиям тангенса и котангенса линии секанса и косеканса. Он же выразил (словесно) алгебраические зависимости между всеми тригонометрическими функциями и, в частности, для случая, когда радиус круга равен единице. Этот чрезвычайно важный случай был рассмотрен европейскими учеными на 300 лет позднее. Наконец, Абу-ль-Вафа составил таблицу синусов через каждые 10¢.

В трудах среднеазиатских ученых тригонометрия превратилась из науки, обслуживающей астрономию, в особую математическую дисциплину, представляющую самостоятельный интерес.

Тригонометрия отделяется от астрономии и становится самостоятельной наукой. Это отделение обычно связывают с именем азербайджанского математика Насирэддина Туси ().

Впервые в европейской науке стройное изложение тригонометрии дано в книге « О треугольниках разных родов» ,написанной Иоганном Мюллером , более известным в математике под именем Региомонтана(). Он обобщает в ней методы решения прямоугольных треугольников и дает таблицы синусов с точностью до 0,0000001. При этом замечательно то, что он полагал радиус круга равнымили, т. е. выразил значения тригонометрических функций в десятичных дробях, перейдя фактически от шестидесятиричной системы счисления к десятичной.

Английский ученый XIV века Брадвардин () первый в Европе ввел в тригонометрические вычисления котангенс под названием «прямой тени» и тангенс под названием «обратной тени».

На пороге XVIIв. В развитии тригонометрии намечается новое направление- аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, вычисление элементов геометрических фигур и учение о тригонометрических функциях строилось на геометрической основе, то в XVII-XIX вв. тригонометрия постепенно становится одной из глав математического анализа. О свойствах периодичности тригонометрических функций знал еще Виет , первые математические исследования которого относились к тригонометрии.

Швейцарский математик Иоганн Бернулли () уже применял символы тригонометрических функций.

В первой половине XIXв. французский ученый Ж. Фурье доказал, что всякое периодическое движение может быть представлено в виде суммы простых гармонических колебаний.

Огромное значение в истории тригонометрии имело творчество знаменитого петербургского академика Леонарда Эйлера(), он придал всей тригонометрии современный вид.

В своем труде «Введение в анализ»(1748 г.) Эйлер разработал тригонометрию как науку о тригонометрических функциях, дал ей аналитическое изложение, выведя всю совокупность тригонометрических формул из немногих основных формул.

Эйлеру принадлежит окончательное решение вопроса о знаках тригонометрических функций во всех четвертях круга, вывод формул приведения для общих случаев.

Введя в математику новые функции - тригонометрические, стало целесообразным поставить вопрос о разложении этих функций в бесконечный ряд. Оказывается, такие разложения возможны:

Sinx=x-https://pandia.ru/text/78/114/images/image008_62.gif" width="224" height="47">

Эти ряды позволяют значительно облегчить составление таблиц тригонометрических величин и для нахождения их с любой степени точности.

Аналитическое построение теории тригонометрических функций, начатое Эйлером, было завершено в работах , Гаусса, Коши, Фурье и других.

« Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций…Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».

В наше время тригонометрия больше не рассматривается как самостоятельная ветвь математики. Важнейшая ее часть-учение о тригонометрических функциях - является частью более общего, построенного с единой точки зрения учения о функциях, изучаемых в математическом анализе; другая же часть - решение треугольников - рассматривается как глава геометрии.

3.Мир тригонометрии.

3.1 Применение тригонометрии в различных науках.

Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела.

Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалеких звезд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Следует отметить применение тригонометрии в следующих областях: техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ), компьютерная томография, фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография, геодезия, архитектура, фонетика , экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Тригонометрия в физике.

Гармонические колебания.

Когда какая-либо точка движется по прямой линии попеременно то в одну, то в другую сторону, то говорят, что точка совершает колебания.

Одним из простейших видов колебаний является движение по оси проекции точки М, которая равномерно вращается по окружности. Закон этих колебаний имеет вид x= Rcos(https://pandia.ru/text/78/114/images/image010_59.gif" width="19" height="41 src="> .

Обычно вместо этой частоты рассматривают циклическую частоту w=, показывающую угловую скорость вращения, выраженную в радианах в секунду. В этих обозначениях имеем: x= R cos(w t+ a). (2)

Число a называют начальной фазой колебания .

Изучение колебаний всякого рода важно уже по одному тому, что с колебательными движениями или волнами мы сталкиваемся весьма часто в окружающем нас мире и с большим успехом используем их (звуковые волны, электромагнитные волны).

Механические колебания.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или маятник. Возьмем, например, гирю, подвешенную на пружине (см. рис.) и толкнем ее вниз. Гиря начнет колебаться вниз и вверх..gif" align="left" width="132 height=155" height="155">.gif" width="72" height="59 src=">.jpg" align="left" width="202 height=146" height="146">График колебания (2) получается из графика колебания(1) сдвигом влево

на . Число a называют начальной фазой.

https://pandia.ru/text/78/114/images/image020_33.gif" width="29" height="45 src=">), где l -длина маятника, а j0-начальный угол отклонения. Чем длиннее маятник, тем медленнее он качается.(Это хорошо видно на рис.1-7 прилож. VIII). На рис.8-16 ,приложения VIII хорошо видно, как изменение начального отклонения влияет на амплитуду колебаний маятника, период при этом не меняется. Измеряя период колебания маятника известной длины, можно вычислять ускорение земного тяготения g в различных точках земной поверхности.

Разряд конденсатора.

Не только многие механические колебания происходят по синусоидальному закону. И в электрических цепях возникают синусоидальные колебания. Так в цепи, изображенной в правом верхнем углу модели, заряд на обкладках конденсатора изменяется по закону q = CU + (q0 – CU) cos ωt, где С- емкость конденсатора, U –напряжение на источнике тока, L –индуктивность катушки, https://pandia.ru/text/78/114/images/image022_30.jpg" align="left" width="348" height="253 src=">Благодаря модели конденсатора, имеющейся в программе « Функции и графики» можно устанавливать параметры колебательного контура и строить, соответствующие графики g(t)и I(t). На графиках 1-4 хорошо видно как влияет напряжение на изменение силы тока и заряда конденсатора, при этом видно, что при положительном напряжении заряд также принимает положительные значения. На рис.5-8 приложения IX показано, что при изменении емкости конденсатора(при изменении индуктивности катушки на рис. 9-14 приложения IX) и сохранении неизменными остальных параметров меняется период колебаний, т. е. меняется частота колебаний силы тока в цепи и меняется частота заряда конденсатора..(см. приложение IX).

Как соединить две трубы.

Приведенные примеры могут создать впечатление, что синусоиды встречаются только в связи с колебаниями. Однако это не так. Например, синусоиды используются при соединении двух цилиндрических труб под углом друг к другу. Чтобы соединить две трубы таким образом, надо срезать их наискосок.

Если развернуть срезанную наискосок трубу, то она окажется ограниченной сверху синусоидой. В этом можно убедиться, обернув свечку бумагой, срезав ее наискосок и развернув бумагу. Поэтому, чтобы получить ровный срез трубы, можно сначала обрезать металлический лист сверху по синусоиде и свернуть его в трубу.

Теория радуги.

Впервые теория радуги была дана в 1637 году Рене Декартом . Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

где n1=1, n2≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.

Северное сияние

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется, силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы

Задачи по тригонометрии с практическим содержанием.

https://pandia.ru/text/78/114/images/image026_24.gif" width="25" height="41">.

Определение коэффициента трения.

Тело веса Р положено на наклонную плоскость с углом наклона a. Тело под действием своего собственного веса прошло ускоренно путь S в t секунд. Определить коэффициент трения k.

Сила давления тела на наклонную плоскость =kPcosa.

Сила, которая тянет тело вниз равна F=Psina-kPcosa=P(sina-kcosa).(1)

Если тело движется по наклонной плоскости, то ускорение а=https://pandia.ru/text/78/114/images/image029_22.gif" width="20" height="41">==gF ;следовательно, .(2)

Из равенств (1) и (2) следует, что g(sina-kcosa)=https://pandia.ru/text/78/114/images/image032_21.gif" width="129" height="48">=gtga-.

Тригонометрия в планиметрии.

Основные формулы при решении задач по геометрии с применением тригонометрии :

sin²α=1/(1+ctg²α)=tg²α/(1+tg²α); cos²α=1/(1+tg²α)=ctg²α/(1+ctg²α);

sin(α±β)=sinα*cosβ±cosα*sinβ; cos(α±β)=cosα*cos+sinα*sinβ.

Соотношение сторон и углов в прямоугольном треугольнике:

1) Катет прямоугольного треугольника равен произведению другого катета на тангенс противолежащего угла.

2) Катет прямоугольного треугольника равен произведению гипотенузы на синус прилежащего угла.

3) Катет прямоугольного треугольника равен произведению гипотенузы на косинус прилежащего угла.

4) Катет прямоугольного треугольника равен произведению другого катета на котангенс прилежащего угла.

Задача1: На боковых сторонах АВ и С D равнобокой трапеции ABCD взяты точки М и N таким образом, что прямая MN параллельна основаниям трапеции. Известно, что в каждую из образовавшихся малых трапеций MBCN и AMND можно вписать окружность, причем радиусы этих окружностей равны r и R соответственно. Найти основания AD и BC.

Дано: ABCD-трапеция, AB=CD, MєAB, NєCD, MN||AD, в трапеции MBCN и AMND можно вписать окружность с радиусом r и R соответственно.

Найти: AD и BC.

Решение:

Пусть O1 и O2 – центры вписанных в малые трапеции окружностей. Прямая О1К||CD.

В ∆ O1O2K cosα =O2K/O1O2 = (R-r)/(R+r).

Т. к. ∆O2FD прямоугольный, то O2DF = α/2 => FD=R*ctg(α/2). Т. к. AD=2DF=2R*ctg(α/2),

аналогично BC = 2r* tg(α/2).

cos α = (1-tg²α/2)/(1+tg²(α/2)) => (R-r)/(R+r)= (1-tg²(α/2))/(1+tg²(α/2)) => (1-r/R)/(1+r/R)= (1-tg²α/2)/(1+tg²(α/2)) => tg (α/2)=√(r/R) => ctg(α/2)= √(R/r), тогда AD=2R*ctg(α/2), BC=2r*tg(α/2), находим ответ.

Ответ : AD=2R√(R/r), BC=2r√(r/R).

Задача2 : В треугольнике ABC известны стороны b, c и угол между медианой и высотой, исходящими из вершины A. Вычислить площадь треугольника ABC.

Дано: ∆ ABC, AD-высота, AE-медиана, DAE=α, AB=c, AC=b.

Найти: S∆ABC.

Решение:

Пусть CE=EB=x, AE=y, AED=γ. По теореме косинусов в ∆AEC b²=x²+y²-2xy*cosγ(1); а в ∆ACE по теореме косинусов c²=x²+y²+2xy*cosγ(2). Вычитая из 1 равенства 2 получим c²-b²=4xy*cosγ(3).

Т. К. S∆ABC=2S∆ACE=xy*sinγ(4), тогда разделив 3 равенство на 4 получим: (c²-b²)/S=4*ctgγ, но ctgγ=tgαб, следовательно S∆ABC= (с²-b²)/4*tgα.

Ответ: (с²- )/4*tg α .

Тригонометрия в искусстве и архитектуре.

Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения (рис.1)

Ситуация меняется (рис2), так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 a+ sin 2 a = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу.

https://pandia.ru/text/78/114/images/image037_18.gif" width="162" height="101">.gif" width="108 height=132" height="132">

Тригонометрия в медицине и биологии.

Модель биоритмов

Модель биоритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

Формула сердца

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.
Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем - на 28-й конференции по вопросам применения компьютерной техники в кардиологии , состоявшейся в Нидерландах. Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории

вновь позабыли.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

3.2 Графические представления о превращении «мало интересных» тригонометрических функций в оригинальные кривые.

Кривые в полярных координатах.

с. 16ис. 19Розетки.

В полярных координатах выбираются единичный отрезок e, полюс О и полярная ось Ох. Положение любой точки М определяется полярным радиусом ОМ и полярным углом j, образованным лучом ОМ и лучом Ох. Число r, выражающее длину ОМ через е (ОМ=rе) и численное значение угла j, выраженного в градусах или в радианах, называются полярными координатами точки М.

Для любой точки, отличной от точки О, можно считать 0≤j<2p и r>0. однако при построении кривых, соответствующих уравнениям вида r=f(j), переменному j естественно придавать любые значения (в том числе и отрицательные, и превышающие 2p), а r может оказаться как положительным, так и отрицательным.

Для того чтобы найти точку (j, r), проведем из точки О луч, образующий с осью Ох угол j , и отложим на нем (при r>0) или на его продолжении в противоположную сторону (при r>0) отрезок ½ r ½е.

Все значительно упростится, если предварительно построить координатную сетку, состоящую из концентрических окружностей с радиусами е,2е,3е и т. д.(с центром в полюсе О) и лучей, для которых j=0°,10°,20°,…,340°,350°; эти лучи будут пригодны и при j<0°, и при j>360°; например, при j=740° и при j=-340° мы попадем на луч, для которого j=20°.

Исследованию данных графиков помогает компьютерная программа « Функции и графики» . Пользуясь, возможностями этой программы исследуем некоторые интересные графики тригонометрических функций.

1 .Рассмотрим кривые, заданные уравнениями: r= a+ sin3 j

I. r=sin3j (трилистник ) (рис.1)

II. r=1/2+sin3j (рис.2), III. r=1+ sin3j (рис.3), r=3/2+ sin3j (рис.4) .

У кривой IV наименьшее значение r=0,5 и лепестки имеют незаконченный вид. Таким образом при а >1 лепестки трилистника имеют незаконченный вид.

2.Рассмотрим кривые при а=0; 1/2; 1;3/2

При а=0 (рис.1),при а=1/2 (рис.2), при а=1 (рис.3) лепестки имеют законченный вид, при а=3/2 будет пять незаконченных лепестков., (рис.4).

3.В общем случае у кривой r=https://pandia.ru/text/78/114/images/image042_15.gif" width="45 height=41" height="41">), т. к. в этом секторе 0°≤≤180°..gif" width="20" height="41">.gif" width="16" height="41"> для одного лепестка потребуется «сектор», превышающий 360°.

На рис1-4 показан вид лепестков при =https://pandia.ru/text/78/114/images/image044_13.gif" width="16" height="41 src=">.gif" width="16" height="41 src=">.

4.Уравнения, найденные немецким математиком-натуралистом Хабенихтом для геометрических форм, встречающихся в мире растений. Например, уравнениям r=4(1+cos3j) и r=4(1+cos3j)+4sin23j соответствуют кривые, изображенные на рис.1.2 .

Кривые в декартовых координатах.

Кривые Лиссажу.

Много интересных кривых можно построить и в декартовых координатах. Особенно интересно выглядят кривые, уравнения которых даны в параметрическом виде:

Где t-вспомогательное переменное(параметр). Например, рассмотрим кривые Лиссажу, характеризуемые в общем случае уравнениями:

Если за параметр t взять время, то фигуры Лиссажу будут представлять собой результат сложения двух гармонических колебательных движений, совершаемых во взаимно перпендикулярных направлениях. В общем случае кривая располагается внутри прямоугольника со сторонами 2а и2в.

Рассмотрим это на следующих примерах

I. x=sin3t; y=sin 5t (рис.1)

II. x=sin 3t; y=cos 5t (рис.2)

III. x=sin 3t; y=sin 4t.(рис.3)

Кривые могут быть замкнутыми и незамкнутыми.

Например, замена уравнений I уравнениями: x=sin 3t; y=sin5(t+3) превращает незамкнутую кривую в кривую замкнутую.(рис.4)

Интересны и своеобразны линии, соответствующие уравнениям вида

у =arcsin(sin k(x- a )).

Из уравнения y=arcsin(sinx) следует:

1) и 2)siny=sinx.

При этим двум условиям удовлетворяет функция у=х. Графиком ее в интервале (-;https://pandia.ru/text/78/114/images/image053_13.gif" width="77" height="41"> будем иметь у=p-х, так как sin(p-x)=sinx и в этом интервале

. Здесь график изобразится отрезком ВС.

Так как sinx –периодическая функция с периодом 2p, то ломаная АВС, построенная в интервале(,) повторится на других участках.

Уравнению y=arcsin(sinkx) будет соответствовать ломаная линия с периодом https://pandia.ru/text/78/114/images/image058_13.gif" width="79 height=48" height="48">

удовлетворяют координаты точек, которые лежат одновременно выше синусоиды (для них у>sinx) и ниже кривой y=-sinx, т. е. « область решений» системы будет состоять из закрашенных на рис.1 областей.

2.Рассмотрим неравенства

1) (y-sinx)(y+sinx)<0.

Для решения данного неравенства сначала строим графики функций: y=sinx; y=-sinx.

Затем закрашиваем области, где y>sinx и одновременно y<-sinx; затем закрашиваем области, где y< sinx и одновременно y>-sinx.

Этому неравенству будут удовлетворять области, закрашенные на рис.2

2)(y2-arcsin2(sinx))(y2-arcsin2(sin(x+ )))<0

Перейдем к следующему неравенству:

(y-arcsin(sinx))(y+arcsin(sinx)){ y-arcsin(sin(x+ ))}{y+arcsin(sin(x+ ))}<0

Для решения данного неравенства сначала строим графики функций: y=±arcsin(sinx); y=±arcsin(sin(x+)) .

Составим таблицу возможных вариантов решений.

1 множитель

имеет знак

2 множитель

имеет знак

3 множитель

имеет знак

4 множитель

имеет знак

Затем рассматриваем и закрашиваем решения следующих систем.

)| и |y|>|sin(x-)|.

2) Второй множитель меньше нуля, т..gif" width="17" height="41">)|.

3) Третий множитель меньше нуля, т.е. |y|<|sin(x-)|, другие множители положительны, т. е. |y|>|sinx| и |y|>|sin(x+Учебные дисциплины" href="/text/category/uchebnie_distciplini/" rel="bookmark">учебных дисциплинах , технике, в быту.

Использование моделирующей программы « Функции и графики» значительно расширило возможности проведения исследований, позволило материализовать знания при рассмотрении приложений тригонометрии в физике. Благодаря этой программе проведены лабораторные компьютерные исследования механических колебаний на примере колебаний маятника, рассмотрены колебания в электрической цепи. Использование компьютерной программы позволило исследовать интересные математические кривые, задаваемые с помощью тригонометрических уравнений и построением графиков в полярных и декартовых координатах. Графическое решение тригонометрических неравенств привело к рассмотрению интересных математических орнаментов.

5.Список использованной литературы.

1. ., Атанасов математических задач с практическим содержанием: Кн. для учителя.-М.:Просвещение,с.

2. .Виленкин в природе и технике: Кн. для внеклассного чтения IX-X кл.-М.:Просвещение,5с(Мир знаний).

3. Доморяд игры и развлечения. Гос. изд. физ-мат. лит. М,9стр.

4. .Кожуров тригонометрии для техникумов. Гос. изд. технико-теоретической лит. М.,1956

5. Кн. для внеклассного чтения по математике в старших классах. Гос. учебно-пед. изд. Мин. Просв. РФ, М.,с.

6. ,Тараканова тригонометрии. 10 кл..-М.:Дрофа,с.

7. О тригонометрии и не только о ней: пособие для учащихся 9-11 кл.. –М.:Просвещение,1996-80с.

8. Шапиро задач с практическим содержанием в преподавании математики. Кн. для учителя.-М.:Просвещение,1990-96с.