Операционный усилитель измерение сопротивления. Операционный усилитель. Неинвертирующие операционные усилители

В статье будет рассмотрена стандартная на операционном усилителе, а также приведены примеры различных режимов работы этого прибора. На сегодняшний день ни одно устройство управления не обходится без усилителей. Это поистине универсальные приборы, которые позволяют выполнять различные функции с сигналом. О том, как работает и что конкретно позволяет сделать этот прибор, вы и узнаете далее.

Инвертирующие усилители

Схема инвертирующего усилителя на ОУ достаточно проста, вы ее можете увидеть на изображении. В ее основе находится операционный усилитель (схемы включения его рассмотрены в данной статье). Кроме этого, здесь:

  1. На резисторе R1 падение напряжения присутствует, по своему значению оно такое же, как входное.
  2. На резисторе R2 также имеется - оно такое же, как выходное.

При этом отношение выходного напряжения к сопротивлению R2 равно по значению отношению входного к R1, но обратно ему по знаку. Зная значения сопротивления и напряжения, можно вычислить коэффициент усиления. Для этого необходимо разделить выходное напряжение на входное. При этом операционный усилитель (схемы включения у него могут быть любыми) может иметь одинаковый коэффициент усиления независимо от типа.

Работа обратной связи

Теперь нужно более детально разобрать один ключевой момент - работу обратной связи. Допустим, на входе имеется некоторое напряжение. Для простоты расчетов примем его значение равным 1 В. Допустим также, что R1=10 кОм, R2=100 кОм.

А теперь предположим, что возникла какая-то непредвиденная ситуация, из-за которой на выходе каскада напряжение установилось на значении 0 В. Далее наблюдается интересная картина - два сопротивления начинают работать в паре, совместно они создают из себя делитель напряжения. На выходе инвертирующего каскада оно поддерживается на уровне 0,91 В. При этом ОУ позволяет фиксировать рассогласование по входам, а на выходе происходит уменьшение напряжения. Поэтому очень просто спроектировать схему на операционных усилителях, реализующую функцию усилителя сигнала от датчика, например.

И продолжаться это изменение будет до той самой поры, покуда не установится на выходе значение стабильное в 10 В. Именно в этот миг на входах операционного усилителя потенциалы окажутся равными. И они будут такими же, как потенциал земли. С другой стороны, если на выходе устройства продолжит уменьшаться напряжение, и оно будет меньше, чем -10 В, на входе потенциал станет ниже, нежели у земли. Следствие этого - на выходе начинает увеличиваться напряжение.

У такой схемы имеется большой недостаток - входной импеданс очень маленький, в особенности у усилителей с большим значением коэффициента усиления по напряжению, в том случае, если цепь обратной связи замкнута. А конструкция, рассмотренная дальше, лишена всех этих недостатков.

Неинвертирующий усилитель

На рисунке приведена схема неинвертирующего усилителя на операционном усилителе. Проанализировав ее, можно сделать несколько выводов:

  1. Значение напряжения UA равно входному.
  2. С делителя снимается напряжение UA, которое равно отношению произведения выходного напряжения и R1 к сумме сопротивлений R1 и R2.
  3. В случае, когда UA по значению равен входному напряжению, коэффициент усиления равен отношению выходного напряжения к входному (или же можно к отношению сопротивлений R2 и R1 прибавить единицу).

Называется данная конструкция неинвертирующим усилителем, у него практически бесконечный входной импеданс. Например, для операционных усилителей 411 серии его значение - 1012 Ом, минимум. А для операционных усилителей на биполярных полупроводниковых транзисторах, как правило, свыше 108 Ом. А вот выходной импеданс каскада, равно как и в ранее рассмотренной схеме, очень мал - доли ома. И это нужно учитывать, когда производится расчет схем на операционных усилителях.

Схема усилителя переменного тока

Обе схемы, рассмотренные в статье ранее, работают на Но вот если в качестве связи источника входного сигнала и усилителя выступает переменный ток, то придется предусматривать заземление для тока на входе устройства. Причем нужно обратить внимание на то, что значение тока крайне мало по величине.

В том случае, когда происходит усиление сигналов переменного тока, необходимо уменьшать коэффициент усиления сигнала постоянного до единицы. В особенности это актуально для случаев, когда коэффициент усиления по напряжению очень большой. Благодаря этому имеется возможность значительно снизить влияние напряжения сдвига, которое приводится к входу устройства.

Второй пример схемы для работы с переменным напряжением

В данной схеме на уровне -3 дБ можно видеть соответствие частоте 17 Гц. На ней у конденсатора импеданс оказывается на уровне двух килоом. Поэтому конденсатор должен быть достаточно большим.

Чтобы построить усилитель переменного тока, необходимо использовать неинвертирующий тип схемы на операционных усилителях. И у него должен быть достаточно большой коэффициент усиления по напряжению. Но вот конденсатор может быть чересчур большим, поэтому лучше всего отказаться от его использования. Правда, придется правильно подобрать напряжение сдвига, приравняв его по значению к нулю. А можно применить Т-образный делитель и увеличить значения сопротивлений обоих резисторов в схеме.

Какую схему предпочтительнее использовать

Большинство разработчиков отдают свое предпочтение неинвертирующим усилителям, так как у них очень высокий импеданс на входе. И пренебрегают схемам инвертирующего типа. Зато у последнего имеется огромное преимущество - он не требователен к самому операционному усилителю, который является его «сердцем».

Кроме того, характеристики, на поверку, у него значительно лучше. И с помощью мнимого заземления можно без особого труда все сигналы комбинировать, причем они не будут оказывать друг на друга какое-то влияние. Может использоваться в конструкциях и схема усилителя постоянного тока на операционном усилителе. Все зависит от потребностей.

И самое последнее - случай, если вся схема, рассмотренная здесь, подключается к стабильному выходу другого операционного усилителя. В этом случае значение импеданса на входе не играет существенной роли - хоть 1 кОм, хоть 10, хоть бесконечность. В этом случае первый каскад всегда выполняет свою функцию по отношению к следующему.

Схема повторителя

Работает повторитель на операционном усилителе аналогично эмиттерному, построенному на биполярном транзисторе. И выполняет аналогичные функции. По сути, это неинвертирующий усилитель, в котором у первого резистора сопротивление бесконечно большое, а у второго равно нулю. При этом коэффициент усиления равен единице.

Имеются специальные типы операционных усилителей, которые используются в технике лишь для схем повторителей. У них значительно лучшие характеристики - как правило, это высокое быстродействие. В качестве примера можно привести такие операционные усилители как OPA633, LM310, TL068. Последний имеет корпус, как у транзистора, а также три вывода. Очень часто такие усилители называют просто буферами. Дело в том, что они обладают свойствами изолятора (очень большой входной импеданс и крайне низкий выходной). Примерно по такому принципу строится и схема усилителя тока на операционном усилителе.

Активный режим работы

По сути, это такой режим работы, при котором выходы и входы операционного усилителя не перегружаются. Если на вход схемы подать очень большой сигнал, то на выходе его просто начнет резать по уровню напряжения коллектора или эмиттера. А вот когда на выходе напряжение фиксируется на уровне среза - на входах ОУ напряжение не меняется. При этом размах не может оказаться большим, нежели напряжение питания

Большая часть схем на операционных усилителях рассчитывается таким образом, что этот размах меньше питающего напряжения на 2 В. Но все зависит от того, какая используется конкретно схема усилителя на операционном усилителе. Такое же имеется ограничение на устойчивость на базе операционного усилителя.

Допустим, есть в источнике с плавающей нагрузкой некое падение по напряжению. В случае если ток имеет нормальное направление движения, можно встретить странную на первый взгляд нагрузку. Например, несколько переполюсованных батарей питания. Такая конструкция может применяться для того, чтобы получить прямой ток заряда.

Некоторые предосторожности

Простой усилитель напряжения на операционном усилителе (схема может быть выбрана любая) можно изготовить буквально "на коленке". Но потребуется учитывать некоторые особенности. Обязательно нужно удостовериться, что обратная связь в схеме отрицательная. Это также говорит о том, что недопустимо путать неинвертирующий и инвертирующий входы усилителя. Кроме того, должна присутствовать цепочка обратной связи для постоянного тока. Иначе операционный усилитель начнет быстро переходить в режим насыщения.

У большинства операционных усилителей входное дифференциальное напряжение очень маленькое по значению. При этом максимальная разность неинвертирующего и инвертирующего входов может ограничиваться значением 5 В при любом подключении источника питания. Если пренебречь данным условием, появятся на входе довольно большие значения токов, которые приведут к тому, что все характеристики схемы ухудшатся.

Самое страшное в этом - физическое разрушение самого операционного усилителя. В результате перестает работать схема усилителя на операционном усилителе полностью.

Следует учитывать

И, конечно же, нужно рассказать о правилах, которые стоит соблюдать, чтобы обеспечить стабильную и долговечную работу операционного усилителя.

Самое главное - ОУ обладает очень высоким коэффициентом усиления по напряжению. И если между входами напряжения изменятся на долю милливольт, на выходе его значение может измениться существенно. Поэтому важно знать: у операционного усилителя выход старается стремиться к тому, чтоб между входами разница напряжений оказалась близка (в идеале равна) к нулю.

Второе правило - потребление тока операционным усилителем крайне малое, буквально наноамперы. Если же на входах установлены полевые транзисторы, то оно исчисляется пикоамперами. Отсюда можно сделать вывод, что входы не потребляют ток, независимо от того, какой используется операционный усилитель, схема - принцип работы остается тем же.

Но не стоит думать, что ОУ действительно постоянно меняет на входах напряжение. Физически это осуществить почти нереально, так как не было бы соответствия со вторым правилом. Благодаря операционному усилителю происходит оценка состояния всех входов. При помощи схемы обратной внешней связи передается напряжение на вход с выхода. Результат - между входами операционного усилителя разница напряжений находится на уровне нуля.

Понятие обратной связи

Это распространенное понятие, и оно уже применяется в широких смыслах во всех областях техники. В любой системе управления имеется обратная связь, которая сравнивает выходной сигнал и заданное значение (эталонное). В зависимости от того, какое значение текущее - происходит корректировка в нужную сторону. Причем системой управления может быть что угодно, даже автомобиль, которые едет по дороге.

Водитель жмет на тормоза, и обратная связь здесь - начало замедления. Проведя аналогию с таким простым примером, можно лучше разобраться с обратной связью в электронных схемах. А отрицательная обратная связь - это если бы при нажимании педали тормоза автомобиль ускорялся.

В электронике обратной связью называют процесс, во время которого происходит передача сигнала с выхода на вход. При этом происходит также погашение сигнала на входе. С одной стороны, это не очень разумная идея, ведь может показаться со стороны, что значительно уменьшится коэффициент усиления. Такие отзывы, кстати, получали основоположники разработки обратной связи в электронике. Но стоит разобраться детальнее в ее влиянии на операционные усилители - практические схемы рассмотреть. И станет ясно, что она и правда немного уменьшает коэффициент усиления, но зато позволяет несколько улучшить остальные параметры:

  1. Сгладить частотные характеристики (приводит их к необходимой).
  2. Позволяет предсказывать поведение усилителя.
  3. Способна устранить нелинейность и искажения сигнала.

Чем глубже обратная связь (речь идет про отрицательную), тем меньшее влияние оказывают на усилитель характеристики с разомкнутой ОС. Результат - все его параметры зависят только от того, какие свойства имеет схема.

Стоит обратить внимание на то, что все операционные усилители работают в режиме с очень глубокой обратной связью. А коэффициент усиления по напряжению (с ее разомкнутой петлей) может достигать даже нескольких миллионов. Поэтому схема усилителя на операционном усилителе крайне требовательна к соблюдению всех параметров по питанию и уровню входного сигнала.

Было показано, что при использовании операционного усилителя в различных схемах включения, усиление каскада на одном операционном усилителе (ОУ), зависит только от глубины обратной связи. Поэтому в формулах для определения усиления конкретной схемы не используется коэффициент усиления самого, если так можно выразиться, «голого» ОУ. То есть как раз тот огромный коэффициент, который указывается в справочниках.

Тогда вполне уместно задать вопрос: «Если от этого огромного «справочного» коэффициента не зависит конечный результат (усиление), тогда в чем же разница между ОУ с усилением в несколько тысяч раз, и с таким же ОУ, но с усилением в несколько сотен тысяч и даже миллионов?».

Ответ достаточно простой. И в том и в другом случае результат будет одинаковый, усиление каскада будет определяться элементами ООС, но во втором случае (ОУ с большим усилением) схема работает более стабильно, более точно, быстродействие таких схем намного выше. Неспроста ОУ делятся на ОУ общего применения и высокоточные, прецизионные.

Как уже было сказано свое название «операционные» рассматриваемые усилители получили в то далекое время, когда в основном применялись для выполнения математических операций в аналоговых вычислительных машинах (АВМ). Это были операции сложения, вычитания, умножения, деления, возведения в квадрат и еще множества других функций.

Эти допотопные ОУ выполнялись на электронных лампах, позднее на дискретных транзисторах и прочих радиодеталях. Естественно, габариты даже транзисторных ОУ были достаточно велики, чтобы использовать их в любительских конструкциях.

И только после того, как благодаря достижениям интегральной электроники, ОУ стали размером с обычный маломощный транзистор, то использование этих деталей в бытовой аппаратуре и любительских схемах стало оправданным.

Кстати, современные ОУ, даже достаточно высокого качества, по цене ненамного выше двух - трех транзисторов. Это утверждение касается ОУ общего применения. Прецизионные усилители могут стоить несколько дороже.

По поводу схем на ОУ сразу стоит сделать замечание, что все они рассчитаны на питание от двухполярного источника питания. Такой режим является для ОУ наиболее «привычным», позволяющим усиливать не только сигналы переменного напряжения, например синусоиду, но также и сигналы постоянного тока или попросту напряжение.

И все-таки достаточно часто питание схем на ОУ производится от однополярного источника. Правда, в этом случае не удается усилить постоянное напряжение. Но часто случается, что в этом просто нет необходимости. О схемах с однополярным питанием будет рассказано далее, а пока продолжим о схемах включения ОУ с двухполярным питанием.

Напряжение питания большинства ОУ чаще всего находится в пределах ±15В. Но это вовсе не значит, что это напряжение нельзя сделать несколько ниже (выше не рекомендуется). Многие ОУ весьма стабильно работают начиная от ±3В, а некоторые модели даже ±1,5В. Такая возможность указывается в технической документации (DataSheet).

Повторитель напряжения

Является самым простым по схемотехнике устройством на ОУ, его схема показана на рисунке 1.

Рисунок 1. Схема повторителя напряжения на операционном усилителе

Нетрудно видеть, что для создания такой схемы не понадобилось ни одной детали, кроме собственно ОУ. Правда, на рисунке не показано подключение питания, но такое начертание схем встречается сплошь и рядом. Единственное, что хотелось бы заметить, - между выводами питания ОУ (например для ОУ КР140УД708 это выводы 7 и 4) и общим проводом следует подключить емкостью 0,01…0,5мкФ.

Их назначение в том, чтобы сделать работу ОУ более стабильной, избавиться от самовозбуждения схемы по цепям питания. Конденсаторы должны быть подключены по возможности ближе к выводам питания микросхемы. Иногда один конденсатор подключается из расчета на группу из нескольких микросхем. Такие же конденсаторы можно увидеть и на платах с цифровыми микросхемами, назначение их то же самое.

Коэффициент усиления повторителя равен единице, или, сказать по- другому, никакого усиления и нет. Тогда зачем нужна такая схема? Здесь вполне уместно вспомнить, что существует транзисторная схема - эмиттерный повторитель, основное назначение которого согласование каскадов с различными входными сопротивлениями. Подобные каскады (повторители) называют еще буферными.

Входное сопротивление повторителя на ОУ рассчитывается как произведение входного сопротивления ОУ на его же коэффициент усиления. Например, для упомянутого УД708 входное сопротивление составляет приблизительно 0,5МОм, коэффициент усиления как минимум 30 000, а может быть и более. Если эти числа перемножить, то входное сопротивление получается, 15ГОм, что сравнимо с сопротивлением не очень качественной изоляции, например бумаги. Такого высокого результата вряд ли удастся достигнуть с обычным эмиттерным повторителем.

Чтобы описания не вызывали сомнения, ниже будут приведены рисунки, показывающие работу всех описываемых схем в программе - симуляторе Multisim. Конечно все эти схемы можно собрать на макетных платах, но ничуть не худшие результаты можно получить и на экране монитора.

Собственно, тут даже несколько лучше: совсем не надо лезть куда-то на полку, чтобы поменять резистор или микросхему. Здесь все, даже измерительные приборы, находится в программе, и «достается» при помощи мышки или клавиатуры.

На рисунке 2 показана схема повторителя, выполненная в программе Multisim.

Рисунок 2.

Исследование схемы провести достаточно просто. На вход повторителя от функционального генератора подан синусоидальный сигнал частотой 1КГц и амплитудой 2В, как показано на рисунке 3.

Рисунок 3.

Сигнал на входе и выходе повторителя наблюдается осциллографом: входной сигнал отображается лучом синего цвета, выходной луч - красный.

Рисунок 4.

А почему, спросит внимательный читатель, выходной (красный) сигнал в два раза больше входного синего? Все очень просто: при одинаковой чувствительности каналов осциллографа обе синусоиды с одной амплитудой и фазой сливаются в одну, прячутся друг за друга.

Для того чтобы разглядеть из сразу обе, пришлось снизить чувствительность одного из каналов, в данном случае входного. В результате синяя синусоида стала на экране ровно вдвое меньше, и перестала прятаться за красную. Хотя для достижения подобного результата можно просто сместить лучи органами управления осциллографа, оставив чувствительность каналов одинаковой.

Обе синусоиды расположены симметрично относительно оси времени, что говорит о том, что постоянная составляющая сигнала равна нулю. А что будет, если к входному сигналу добавить небольшую постоянную составляющую? Виртуальный генератор позволяет сдвинуть синусоиду по оси Y. Попробуем сдвинуть ее вверх на 500мВ.

Рисунок 5.

Что из этого получилось показано на рисунке 6.

Рисунок 6.

Заметно, что входная и выходная синусоиды поднялись вверх на полвольта, при этом ничуть не изменившись. Это говорит о том, что повторитель в точности передал и постоянную составляющую сигнала. Но чаще всего от этой постоянной составляющей стараются избавиться, сделать ее равной нулю, что позволяет избежать применения таких элементов схемы, как межкаскадные разделительные конденсаторы.

Повторитель это, конечно, хорошо и даже красиво: не понадобилось ни одной дополнительной детали (хотя бывают схемы повторителей и с незначительными «добавками»), но ведь усиления никакого не получили. Какой же это тогда усилитель? Чтобы получился усилитель достаточно добавить всего несколько деталей, как это сделать будет рассказано дальше.

Инвертирующий усилитель

Для того, чтобы из ОУ получился инвертирующий усилитель достаточно добавить всего два резистора. Что из этого получилось, показано на рисунке 7.

Рисунок 7. Схема инвертирующего усилителя

Коэффициент усиления такого усилителя рассчитывается по формуле K=-(R2/R1). Знак «минус» говорит не о том, что усилитель получился плохой, а всего лишь, что выходной сигнал будет противоположен по фазе входному. Недаром усилитель и называется инвертирующим. Здесь было бы уместно вспомнить транзистор включенный по схеме с ОЭ. Там тоже выходной сигнал на коллекторе транзистора находится в противофазе с входным сигналом, поданным на базу.

Вот тут как раз и стоит вспомнить, сколько усилий придется приложить, чтобы на коллекторе транзистора получить чистую неискаженную синусоиду. Требуется соответствующим образом подобрать смещение на базе транзистора. Это, как правило, достаточно сложно, зависит от множества параметров.

При использовании ОУ достаточно просто подсчитать сопротивление резисторов согласно формулы и получить заданный коэффициент усиления. Получается, что настройка схемы на ОУ намного проще, чем настройка нескольких транзисторных каскадов. Поэтому не надо бояться, что схема не заработает, не получится.

Рисунок 8.

Здесь все так же, как и на предыдущих рисунках: синим цветом показан входной сигнал, красным он же после усилителя. Все соответствует формуле K=-(R2/R1). Выходной сигнал находится в противофазе с входным (что соответствует знаку «минус» в формуле), и амплитуда выходного сигнала ровно в два раза больше входного. Что также справедливо при соотношении (R2/R1)=(20/10)=2. Чтобы сделать коэффициент усиления, например, 10 достаточно увеличить сопротивление резистора R2 до 100КОм.

На самом деле схема инвертирующего усилителя может быть несколько сложнее, такой вариант показан на рисунке 9.

Рисунок 9.

Здесь появилась новая деталь - резистор R3 (скорее она просто пропала из предыдущей схемы). Его назначение в компенсации входных токов реального ОУ с тем, чтобы уменьшить температурную нестабильность постоянной составляющей на выходе. Величину этого резистора выбирают по формуле R3=R1*R2/(R1+R2).

Современные высокостабильные ОУ допускают подключение неинвертирующего входа на общий провод напрямую без резистора R3. Хотя присутствие этого элемента ничего плохого и не сделает, но при теперешних масштабах производства, когда на всем экономят, этот резистор предпочитают не ставить.

Формулы для расчета инвертирующего усилителя показаны на рисунке 10. Почему на рисунке? Да просто для наглядности, в строке текста они смотрелись бы не так привычно и понятно, были бы не столь заметны.

Рисунок 10.

Про коэффициент усиления было сказано ранее. Здесь заслуживают внимания разве что входные и выходные сопротивления неинвертирующего усилителя. С входным сопротивлением все, вроде, ясно: он получается равным сопротивлению резистора R1, а вот выходное сопротивление придется посчитать, по формуле, показанной на рисунке 11.

Буквой K” обозначен справочный коэффициент ОУ. Вот, пожалуйста, посчитайте чему будет равно выходное сопротивление. Получится достаточно маленькая цифра, даже для среднего ОУ типа УД7 при его K” равным не более 30 000. В данном случае это хорошо: ведь чем ниже выходное сопротивление каскада (это касается не только каскадов на ОУ), тем более мощную нагрузку, в разумных, конечно, пределах, к этому каскаду можно подключить.

Следует сделать отдельное замечание по поводу единицы в знаменателе формулы для расчета выходного сопротивления. Предположим, что соотношение R2/R1 будет, например, 100. Именно такое отношение получится в случае коэффициента усиления инвертирующего усилителя 100. Получается, что если эту единицу отбросить, то особо ничего не изменится. На самом деле это не совсем так.

Предположим, что сопротивление резистора R2 равно нулю, как в случае с повторителем. Тогда без единицы весь знаменатель превращается в нуль, и таким же нулевым будет выходное сопротивление. А если потом этот нуль окажется где-то в знаменателе формулы, как на него прикажете делить? Поэтому от этой вроде бы незначительной единицы избавиться просто невозможно.

В одной статье, даже достаточно большой, всего не написать. Поэтому придется все, что не уместилось рассказать в следующей статье. Там будет описание неинвертирующего усилителя, дифференциального усилителя, усилителя с однополярным питанием. Также будет приведено описание простых схем для проверки ОУ.

Основным активным элементом современной аналоговой схемотехники является операционный усилитель – сложная схема, выполненная в интегральном исполнении (т. е. интегральная микросхема). Термин «операционный усилитель» (сокращенно ОУ) исторически восходит к ламповым аналоговым вычислительным машинам (АВМ) – приборам, позволяющим представить некоторые неэлектрические процессы изменениями во времени электрических величин (токов, напряжений); иными словами, над токами и напряжениями в АВМ производятся «операции». Главными же составными частями АВМ являются усилители, коэффициенты передачи которых можно оперативно менять в процессе работы (с помощью перемычек и потенциометров). Именно эти усилители и получили вначале название «операционных».

Область применения ОУ в настоящее время существенно расширилась,

изменилась и технология их изготовления. Однако сохранилось главное преимущество – возможность быстро и без больших расходов изменять не только коэффициент передачи усилителя, но и вообще менять назначение и функцию электронной схемы. Как правило, общий усилитель используется в сочетании с двумя-тремя дополнительными элементами: сопротивлениями, емкостями, диодами и т. д. Характер подключения этих дополнительных элементов, как будет показано в данном разделе, определяет фундаментальные свойства образующейся электронной схемы. Изменение всего лишь одного элемента кардинально меняет функцию и назначение схемы.

Если ОУ выполнен в виде интегральной микросхемы, то он имеет особые обозначение и маркировку. Так, в принципиальных электрических схемах ОУ изображают в виде фигуры, приведенной на рис. 5.1. На рисунке слева изображены входы ОУ, справа – выход. Как видно, ОУ имеет два входа, различающиеся тем, как изменяется фаза сигнала при прохождении его через усилитель. Вход, при подаче сигнала на который сдвиг фазы со-ставляет 0°, называют неинвертирующим (на рис. 5.1 он имеет знак «+»). Второй вход ОУ называют инвертирующим, так как сигнал, поданный на него, приобретает в ОУ сдвиг фазы 180° (на рис. 5.1 вход отмечен «–»). Разумеется, говорить о сдвиге фаз можно лишь при передаче через ОУ гармонических сигналов; однако выбор входа влияет и на прохождение через операционный усилитель постоянных напряжений – такой сигнал сохраняет знак, если поступает на неинвертирующий вход, и меняет знак, если подается на инвертирующий вход.

На схемах рядом с фигурой, обозначающей ОУ, обычно ставят буквы DA , что соответствует аналоговой микросхеме (в отличие от цифровой, т. е. «дискретной» микросхемы, имеющей буквенное обозначение DD ). Операционные усилители (микросхемы), выпускаемые промышленностью Российской Федерации, составляют серии (серия 140, серия 544 и т. д.); признаком того, что какая-то микросхема является ОУ, являются буквы УД (реже – УТ), например 140УД8А. Упрощенная структурная схема такого ОУ приведена на рис. 5.2. Как видно из рисунка, в схеме – четыре основных блока: дифференциальный усилитель ДУ (1), линейный усилитель ЛУ (2), усилитель-ограничитель УО (3) и эмиттерный повторитель ЭП (4). ДУ обеспечивает усиление разности двух сигналов, поступающих на неинвертирующий и инвертирующий входы ОУ (соответственно,
и
). ЛУ состоит из нескольких усилительных каскадов и имеет огромный общий коэффициент усиления. Наличие УО позволяет использовать ОУ как преобразователь формы сигналов, расширяет сферу их применения. Оконечный блок ОУ – эмиттерный повторитель – выполняет функцию трансформатора сопротивлений и определяет значение выходного сопротивления ОУ R вы x . Обычно R вы x имеет порядок единиц килоом, у отдельных типов ОУ – сотни ом. Без ЭП значение R вы x было бы больше: таким образом, благодаря наличию ЭП осуществляется защита ОУ от шунтирования низкоомной нагрузкой.

Структурная схема (рис. 5.2) является упрощенной и содержит лишь основные блоки ОУ. Наряду с ДУ, ЛУ, УО и ЭП типовая схема ОУ содержит блок согласования уровней постоянных напряжений (для обеспечения усиления постоянных сигналов), блок зашиты от коротких замыканий, а также цепи питания. Питание ОУ, как правило, двухполярное симметричное, т. е. используются два источника с напряжениями Е 1 и Е 2 , причем Е 1 = – E 2 .

Основные параметры и характеристики ОУ. Как у всякого усилителя, у ОУ важными параметрами являются амплитудная (передаточная) характеристика, коэффициент усиления, амплитудно-частотная характеристика (АЧХ), фазочастотная характеристика (ФЧХ), а также входное и выходное сопротивления. Очевидно, что поскольку у ОУ два входа, то каждый из перечисленных параметров, кроме R вых, должен отдельно рассматриваться для случая, когда усиливаемый сигнал поступает на инвертирующий вход (при инвертирующем включении), и для случая, когда используется неинвертирующий вход (при неинвертирующем включении). Приведенный набор параметров характеризует усилитель в линейном режиме, т. е. при «малом» сигнале. Если при прохождении сигнала через ОУ его форма меняется из-за нелинейных искажений, то приходится пользоваться другими параметрами, описывающими выходной сигнал как импульс. Это – скорость нарастания выходного сигнала, амплитуда импульсов, форма фронта импульса, его длительность. Параметры ОУ при «малом» и «большом» сигналах тесно связаны, так как относятся к одному и тому же усилителю. Рассмотрим основные параметры и характеристики ОУ.

1. Передаточная характеристика ОУ – зависимость амплитуды выходного сигнала U вых от амплитуды входного сигнала.

В электронике указанную зависимость гораздо чаше называют амплитудной характеристикой, однако применительно к ОУ используют специфическую терминологию. Возможно, разницей в терминологии стремятся под-

черкнуть различие в методиках измерения: в транзисторных и ламповых усилителях постоянный сигнал, как правило, не усиливается и амплитудную характеристику снимают при частоте сигнала f  0. Напротив, в ОУ передаточную характеристику стремятся измерить при f = 0. В силу последнего соображения передаточную характеристику измеряют при обеих полярностях U вх.

Передаточные характеристики ОУ при нормальном режиме работы приведены на рис. 5.3. Здесь 1 – передаточная характеристика при подаче входного сигнала на неинвертирующий вход (U в x =
); 2– она же при подаче на инвертирующий вход (U в x =
). Участок – U в x . max < U в x < < U в x max соответствует линейному усилению, при |U в x | > U в x max возникают нелинейные искажения, сигнал ограничивается «сверху». Можно приближённо считать, что уровни ограничения равны +E и –Е , а U в x . max = E / К , где К – коэффициент усиления ОУ.

2. Коэффициент усиления ОУ К может быть определен по наклону линейного участка передаточной характеристики: он количественно равен тангенсу угла α (рис. 5.3). Отметим, что передаточные характеристики (рис. 5.3) являются качественными: с учетом реальных значений коэффициентов усиления передаточные характеристики промышленных образцов ОУ имеют почти вертикальные линейные участки.

3. Амплитудно-частотная характеристика. В операционных усилителях в подавляющем большинстве образцов обеспечивается идентичность свойств при инвертирующем и неинвертирующем включениях (например, коэффициенты усиления при обоих включениях равны по модулю). Идентичность свойств ОУ при разных включениях позволяет рассматривать не две, а одну единую АЧХ (а также ФЧХ). АЧХ типового ОУ приведена на рис. 5.4.

4. Фазочастотная характеристика. Хотя при инвертирующем включении ОУ сдвиг фаз между входным и выходным сигналами должен быть равен 180°, а при неинвертирующем 0°, на самом деле, в реальных образцах

5. Входные и выходные сопротивления. В силу идентичности свойств ОУ при инвертирующем и неинвертирующем включениях значения входных сопротивлений по обоим входам усилителя (соответственно,
и
) практически одинаковы и составляют от сотен килоом до единиц-десятков мегаом (ОУ типа 140УД8А имеет даже R в x = 10 9 Ом). Порядок значений R вы x оговорен ранее: выходные сопротивления ОУ лежат в пределах от единиц килоом до сотен ом.

6. Скорость нарастания большого сигнала – параметр комплексный, охватывающий сразу и амплитуду импульсного сигнала на выходе ОУ, и длительность фронта. Так как речь идет о большом сигнале, который в процессе усиления приобретает амплитуду, близкую к Е (рис. 5.4), то, обозначив длительность фронта через τ фр, для скорости и нарастания сигнала запишем  2Е /τ фр. Значение тесно связано с частотными свойствами ОУ: это очевидно, так как τ фр ~ 1/f в. гр, где f в. гр – верхняя граничная частота.

Недостатки операционных усилителей. Главными недостатками ОУ являются:

–снижение коэффициента усиления при подключении низкоомной нагрузки;

–смещение передаточной характеристики из начала координат (разбаланс);

Рассмотрим эти явления и меры борьбы с ними.

1. Снижение коэффициента усиления при подключении нагрузки. Несмотря на то, что в состав ОУ входит эмиттерный повторитель и R вых в результате этого снижено, все же оно остается достаточно большим: при подключении нагрузки с сопротивлением порядка единиц–десятков ом имеют место отрицательные явления: снижение коэффициента усиления и, одновременно, уровня максимального выходного сигнала.

Графически эти эффекты отражены на рис. 5.5: передаточная характеристика 1 соответствует режиму холостого хода (сопротивлению нагрузки R н  ), характеристики 2 и 3 соответствуют нагрузкам с R н 2 > R н 3 .

Для того чтобы уменьшить отрицательные последствия рассматриваемого явления, применяют включение дополнительных повторителей, у которых R вых  R н.

Вместе с тем, отметим, что если вся сложная электронная схема строится из каскадов на основе ОУ, то в этом случае для каждого ОУ (кроме ОУ оконечного каскада) автоматически обеспечивается по нагрузке режим холостого хода: ведь нагрузкой ОУ является также операционный усилитель с R вх, во много раз (на два-три порядка) превышающим R вых. Таким образом, разработчики ОУ позаботились об объединении схем на их основе.

2. Смещение передаточной характеристики из начала координат (разбаланс). Наличие двух источников питания, причем с не всегда одинаковыми напряжениями, часто становится причиной смещения передаточной характеристики ОУ из начала координат. Это явление часто называют разбалансом. Возможны и другие причины возникновения разбаланса. Явление разбаланса иллюстрирует график рис. 5.6. Здесь напряжение разбаланса обозначено как ΔU .

Смещение передаточной характеристики от начала координат приводит к следующим негативным последствиям:

–к изменению уровня выходного сигнала при усилении постоянного сигнала;

–к появлению нежелательного «пьедестала» при усилении малого переменного сигнала;

– к возникновению нелинейных искажений при усилении переменного сигнал с амплитудой, близкой к Е /К .

Возможны и другие отрицательные последствия разбаланса: особенно опасен он в сумматорах постоянных сигналов, так как при этом возникает ошибка сложения.

Борьба с разбалансом сводится к компенсации напряжения ΔU . Если ОУ включен таким образом, что для подачи полезного сигнала используется лишь один вход, то для компенсации разбаланса можно второй вход отсоединить от земли и подать на него напряжение, равное по значению и обратное по знаку напряжению ΔU .

Рассмотрим этот метод подробнее. Как указано ранее, первым узлом ОУ является дифференциальный усилитель, работа которого описывается формулой U вы x = К ДУ (

). Допустим, что используется неинвертирующее включение ОУ. В этом случае инвертирующий вход соединен с землей,
= 0: U вы x = К ДУ
. При возникновении разбаланса эта формула неверна и должна быть заменена другой: U вы x = К ДУ (
– ΔU ).

Отсюда видно, что «вернуться» к прямо пропорциональной зависимости U вы x от
можно при
= – ΔU , т. е. U вы x = К ДУ (
– ΔU
) = = К ДУ (
– ΔU + ΔU ) = К ДУ
.

Подачу компенсационного напряжения осуществляют обычно от источника питания через потенциометр; другой способ – использование входного тока I вх самого ОУ. В последнем случае между неиспользуемым для подачи полезного сигнала входом ОУ и землей включают потенциометр (так называемое балансировочное сопротивление), падение напряжения на котором при протекании входного тока ОУ равно ΔU .

Схемы, реализующие два рассмотренных метода борьбы с разбалансом, приведены на рис. 5.7 (так как на практике чаще используется инвертирующее включение ОУ, то эти схемы также соответствуют инвертирующему включению). Следует заметить, что явление разбаланса – непостоянное, значение ΔU меняется под влиянием многих факторов, и поэтому режим ОУ надо регулярно контролировать и оперативно менять компенсационное напряжение.

При рассмотрении параметров ОУ было отмечено, что на высоких частотах происходит, с одной стороны, снижение К , а с другой – рост значения Δφ К . Если допустить, что значения γ и Δφ  γ от частоты не зависят, причем Δφ  γ = 0 (это справедливо для многих схем на основе ОУ), то на низких и средних частотах (где Δφ К = 180°, при инвертирующем включении ОУ) условие баланса фаз не выполняется и генерация не возникает. C увеличением частоты Δφ К возрастает и может достигнуть 360° и больших значений. Однако генерация возникает только в случае, когда на этих частотах выполняется условие баланса амплитуд, т. е. при К > 1/ γ .

Схемная реализация коррекции ОУ обычно такова: ею охватывают не

весь усилитель, а один или несколько каскадов – к специальным выводам микросхемы подключают один или несколько внешних элементов (конденсаторов, резисторов). Наиболее распространены однополюсная, двухполюсная коррекция, коррекции с фазовым опережением и с фазовым запаздыванием. Однополюсная коррекция заключается во включении параллельно части усилительных каскадов ОУ емкости С K (рис. 5.9). Эта емкость на высоких частотах шунтирует усилитель и снижает усиление ОУ.

Схема двухполюсной коррекции приведена на рис. 5.10, а : она состоит из двух конденсаторов С 1 и С 2 и резистора R 3 , причем С 2  10С 1 . Действие схемы различно на разных частотах: при достаточно малых значениях частоты f сопротивление С 2 велико и сигнал через цепь не проходит, никакого корректирующего воздействия схема не оказывает. С увеличением частоты сопротивление С 1 уменьшается и цепь двухполюсной коррекции превращается в цепь однополюсной коррекции, причем функцию С K выполняет эквивалентная емкость С э = С 1 С 2 /(С 1 + С 2). Следовательно, можно считать, что схема

двухполюсной коррекции состоит из частотно-управляемого ключа и включаемой им схемы однополюсной коррекции. На рис. 5.10, б изображены амплитудно-частотные характеристики ОУ без коррекции (1), при использовании однополюсной (2) и двухполюсной (3) коррекций.

Схема коррекции с фазовым опережением (рис. 5.11, а ) подключается последовательно с используемым входом ОУ и содержит резистор R 1 и конденсатор С . Суть действия этой схемы заключается во введении в усилитель дополнительной дифференцирующей цепи C R в x ОУ, где R в x ОУ – входное сопротивление ОУ. При этом имеет место компенсация сдвига фаз в усилителе Δφ К сдвигом фаз в цепи коррекции, так как Δφ К и Δφ кор имеют разные знаки (рис. 5.11, б , где кривая 1 – график Δφ К , 2 – график Δφ кор, 3 – их суммы).

Схема коррекции с фазовым опережением, как дифференцирующая цепь, является фильтром высоких частот; в результате этого коэффициент усиления усилителя на низких частотах снижается, что является недостатком (для того чтобы коэффициент усиления не был бы на частоте f = 0 равен нулю, С 5 шунтируют резистором R 1).

Схема коррекции с фазовым запаздыванием (рис. 5.12) подключается между двумя входами операционного усилителя и содержит резистор и конденсатор. Сопротивление корректирующей цепи на высоких частотах уменьшается и шунтирует вход усилителя, что эквивалентно уменьшению К для высокочастотных гармоник спектра сигнала.

Примечание. Термины «фазовое опережение» и «фазовое запаздывание» в названиях схем коррекции можно объяснить, сравнивая Δφ К в ОУ без коррекции и с подключением той или иной корректирующей цепи. Например, при подключении дифференцирующей цепи (рис. 5.10, а ) сдвиг фаз приобретает положительную добавку. Цепь R 1 – C имеет комплексное сопротивление с отрицательной мнимой частью, поэтому подключение этой цепочки ко входу ОУ, кроме шунтирования входного сопротивления на высоких частотах, вызывает на тех же частотах отрицательную добавку сдвига фаз. Если теперь представить, допустим, гармонический сигнал, проходящий через ОУ, в виде вращающегося вектора на комплексной плоскости, то наличие положительной добавки в фазе означает, что вектор вращается с опережением по отношению к вектору сигнала с меньшей фазой. Вектор сигнала, имеющего отрицательную «добавку» в фазе, вращается c запаздыванием.

Операционный усилитель (ОУ) — это основной элемент современной аналоговой электроники. Благодаря отличным характеристикам и простоте расчетов, ОУ очень легки в использовании. Операционные усилители еще называют дифференциальными усилителями, поскольку они могут усилить разность напряжений на входах.

Операционные усилители выпускаются как готовые микросхемы, иногда по одному, а иногда и по несколько штук в одном корпусе. Существует множество видов операционных усилителей, которые отличаются между собой техническими параметрами, что в конечном итоге влияет на целесообразность применения в конкретных схемах.

В теории операционный усилитель имеет идеальные параметры. На практике же их параметры стремятся к идеальным, но все же не достигают их. Использование понятия «идеального» операционного усилителя помогает упростить расчеты.

Этими идеальными параметрами являются:

  • бесконечно большое усиление при открытой петли обратной связи;
  • бесконечно широкая полоса передаваемых частот;
  • бесконечно большое входное сопротивление;
  • импеданс равный нулю;
  • выходное напряжение равно нулю при равенстве входных напряжений.

Как вы можете видеть, такие параметры не могут быть обеспечены в полной мере, но из года в год ОУ реально все более и более приближаются к идеалу.

Есть несколько основных схем работы операционного усилителя:

  • инвертирующий
  • неинвертирующий
  • вычитание
  • сложение
  • дифференцирование
  • интегрирование
  • повторитель напряжения
  • аналоговый компаратор

Это основная схема, в которой работает ОУ. Работа операционного усилителя характеризуется не только усилением (или ослаблением) входного сигнала, но и изменением его фазы. Усиление обозначается буквой k. Приведенный ниже график показывает влияние операционного усилителя в такой схеме:

Синим цветом представлен график входного сигнала, а красным — график выходного сигнала, причем усиление системы составляет 2 (k=2). Как видно, амплитуда выходного сигнала в два раза выше, чем амплитуда входного сигнала, и также видно, что сигнал перевернут.

Схема такого усилителя достаточно проста, и представлена на следующем рисунке:

Эта схема доказывает, почему операционные усилители являются настолько популярными. Для того, чтобы вычислить значения элементов нам достаточно использовать следующую формулу:

Как видно, резистор R3 не влияет на усиление схемы, и можно было бы обойтись без него, соединив положительный вход усилителя с минусом питания. В данном случае резистор R3 используется в качестве защиты.

В схеме неинвертирующего усилителя ситуация очень схожа с инвертирующим усилителем, с той лишь разницей, что здесь не происходит инверсия сигнала, то есть фаза сохраняется. Приведенный ниже график показывает, что происходит с усиленным сигналом:

Так же, как и в предыдущей схеме, коэффициент усиления равен k=2, а на вход подан синусоидальный сигнал. Как видно, изменению подверглась только амплитуда сигнала.

Ниже приведена принципиальная схема использования операционного усилителя в качестве неинвертирующего усилителя:

Данная схема усилителя также является очень простой, здесь есть два резистора. Входной сигнал подается на положительный вход ОУ. Чтобы рассчитать усиление необходимо применить формулу:

Из формулы видно, что усиление не может быть меньше единицы, т. е. такая схема не позволяет подавить сигнал.

Операционный усилитель в схеме вычитания (дифференциальный усилитель)

Другим типом схемы использования ОУ является дифференциальный усилитель, который позволяет получить разность двух входных сигналов, которая впоследствии может быть усилена. На графике, приведенном ниже, представлен принцип работы системы.

Следующая схема позволяет реализовать такую работу операционного усилителя:

Схема является более сложной по сравнению с предыдущими. Чтобы рассчитать напряжение на выходе, следует применить формулу:

Первая часть уравнения отвечает за усиление (или ослабление), а вторая часть — это разница двух напряжений.

Этот тип функции полностью противоположен функции вычитания. Его интересной особенностью является то, что здесь может быть обработано более двух сигналов. На этом принципе основаны все аудио микшеры.

Как видно на схеме можно суммировать множество сигналов, схема проста и интуитивно понятна. Для расчета используем формулу:

В курсе электроники есть много важных тем. Сегодня мы попытаемся разобраться с операционными усилителями.
Начнем сначала. Операционный усилитель - это такая «штука», которая позволяет всячески оперировать аналоговыми сигналами. Самые простейшие и основные - это усиление, ослабление, сложение, вычитание и много других (например, дифференцирование или логарифмирование). Абсолютное большинство операций на операционных усилителях (далее ОУ) выполняются с помощью положительных и отрицательных обратных связей.
В данной статье будем рассматривать некий «идеал» ОУ, т.к. переходить на конкретную модель не имеет смысла. Под идеалом подразумевается, что входное сопротивление будет стремиться к бесконечности (следовательно, входной ток будет стремиться к нулю), а выходное сопротивление - наоборот, будет стремиться к нулю (это означает, что нагрузка не должна влиять на выходное напряжение). Также, любой идеальный ОУ должен усиливать сигналы любых частот. Ну, и самое важное, коэффициент усиления при отсутствующей обратной связи должен также стремиться к бесконечности.

Ближе к делу
Операционный усилитель на схемах очень часто обозначается равносторонним треугольничком. Слева расположены входы, которые обозначены "-" и "+", справа - выход. Напряжение можно подавать на любой из входов, один из которых меняет полярность напряжения (поэтому его назвали инвертирующим), другой - не меняет (логично предположить, что он называется неинвертирующий). Питание ОУ, чаще всего, двуполярное. Обычно, положительное и отрицательное напряжение питания имеет одинаковое значение (но разный знак!).
В простейшем случае можно подключить источники напряжения прямо ко входам ОУ. И тогда напряжение на выходе будет расчитываться по формуле:
, где - напряжение на неинвертирующем входе, - напряжение на инвертирующем входе, - напряжение на выходе и - коэффициент усиления без обратной связи.
Посмотрим на идеальный ОУ с точки зрения Proteus.


Предлагаю «поиграть» с ним. На неинвертирующий вход подали напряжение в 1В. На инвертирующий 3В. Используем «идеальный» ОУ. Итак, получаем: . Но тут у нас есть ограничитель, т.к. мы не сможем усилить сигнал выше нашего напряжения питания. Таким образом, на выходе все равно получим -15В. Итог:


Изменим коэффициент усиления (чтобы Вы мне поверили). Пусть параметр Voltage Gain станет равным двум. Та же задача наглядно решается.

Реальное применение ОУ на примере инвертирующего и неинвертирующего усилителей
Есть два таких основных правила:
I. Выход операционного усилителя стремится к тому, чтобы дифференциальное напряжение (разность между напряжением на инвертирующем и неинвертирующем входах) было равно нулю.
II. Входы ОУ не потребляют тока.
Первое правило реализуется за счет обратной связи. Т.е. напряжение передается с выхода на вход таким образом, что разность потенциалов становится равной нулю.
Это, так сказать, «священные каноны» в теме ОУ.
А теперь, конкретнее. Инвертирующий усилитель выглядит именно так (обращаем внимание на то, как расположены входы):


Исходя из первого «канона» получаем пропорцию:
, и немного «поколдовав» с формулой выводим значение для коэффициента усиления инвертирующего ОУ:

Приведенный выше скрин в комментариях не нуждается. Просто сами все подставьте и проверьте.

Следующий этап - неинвертирующий усилитель.
Тут все также просто. Напряжение подается непосредственно на неинвертирующий вход. На инвертирующий вход подводится обратная связь. Напряжение на инвертирующем входе будет:
, но применяя первое правило, можно утверждать, что

И снова «грандиозные» познания в области высшей математики позволяют перейти к формуле:
Приведу исчерпывающий скрин, который можете перепроверить, если хотите:

Напоследок, приведу парочку интересных схем, чтобы у Вас не сложилось впечатления, что операционные усилители могут только усиливать напряжение.

Повторитель напряжения (буферный усилитель). Принцип действия такой же, как и у транзисторного повторителя. Используется в цепях с большой нагрузкой. Также, с его помощью можно решить задачку с согласованием импедансов, если в схеме есть нежелательные делители напряжения. Схема проста до гениальности:

Суммирующий усилитель. Его можно использовать, если требуется сложить (отнять) несколько сигналов. Для наглядности - схема (снова обращаем внимание на расположение входов):


Также, обращаем внимание на то, что R1 = R2 = R3 = R4, а R5 = R6. Формула расчета в данном случае будет: (знакомо, не так ли?)
Таким образом, видим, что значения напряжений, которые подаются на неинвертирующий вход «обретают» знак плюс. На инвертирующий - минус.

Заключение
Схемы на операционных усилителях чрезвычайно разнообразны. В более сложных случаях Вы можете встретить схемы активных фильтров, АЦП и устройств выборки хранения, усилители мощности, преобразователи тока в напряжение и многие многие другие схемы.
Список источников
Краткий список источников, который поможет Вам быстрее освоится как в ОУ, так и в электронике в целом:
Википедия
П. Хоровиц, У. Хилл. «Искусство схемотехники»
Б. Бейкер. «Что нужно знать цифровому разработчику об аналоговой электронике»
Конспект лекций по электронике (желательно, собственный)
UPD.: Спасибо НЛО за приглашение